
If \[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\] then \[\theta = n\pi + \dfrac{\pi }{4}\] , \[n \in Z\]
II. \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\] then \[\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \pm \dfrac{1}{{\sqrt 2 }}\]
A.Only I is true
B.Only II is true
C.Both I and II are true
D.Neither I or II are true
Answer
554.7k+ views
Hint: We are asked to find out which of the following statements are true. For this try to find out the value of \[\theta \] for each statement. Equate L.H.S to R.H.S such that you can simply find the value of \[\theta \] . Then compare with the options given and select the appropriate answer.
Complete step-by-step answer:
Given, two expressions
\[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\] and \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
Let us check each expression one by one.
The first expression is \[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\]
\[L.H.S = \sin \left( {\dfrac{\pi }{4}\cot \theta } \right)\] (i)
We know, \[\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)\]
Using this in equation (i), we get
\[L.H.S = \cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}\cot \theta } \right)\]
Equating with the R.H.S we get
\[\cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\]
Equating the angles of cosine, we get
\[\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\tan \theta + \dfrac{\pi }{4}\cot \theta \\
\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}(\tan \theta + \cot \theta ) \\
\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\tan \theta + \dfrac{1}{{\tan \theta }}} \right) \\
\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{\tan \theta }}} \right) \]
We know, \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] using this we get
\[\dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\dfrac{{{{\sec }^2}\theta }}{{\tan \theta }}} \right) \\
\Rightarrow 2\tan \theta = {\sec ^2}\theta \\
\Rightarrow 2\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right) = \left( {\dfrac{1}{{{{\cos }^2}\theta }}} \right) \]
\[\Rightarrow 2\sin \theta \cos \theta = 1 \\
\Rightarrow \sin 2\theta = 1 \\
\Rightarrow 2\theta = \dfrac{{n\pi }}{2} \\
\Rightarrow \theta = \dfrac{{n\pi }}{4} \]
Where n is any integer
Therefore statement I is incorrect as it says \[\theta = n\pi + \dfrac{\pi }{4}\] but \[\theta = \dfrac{{n\pi }}{4}\] .
Second expression: \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
We can write \[\cot \left( {\dfrac{\pi }{2} - \theta } \right) = \tan \theta \] .
Using this we get
\[\cot \left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
Equating the angles we get,
\[\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}\sin \theta } \right) = \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
\[\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{2}\sin \theta + \dfrac{\pi }{2}\cos \theta \\
\Rightarrow \sin \theta + \cos \theta = 1 \]
Multiplying both sides by \[\dfrac{1}{{\sqrt 2 }}\] , we get
\[\dfrac{1}{{\sqrt 2 }}\sin \theta + \dfrac{1}{{\sqrt 2 }}\cos \theta = \dfrac{1}{{\sqrt 2 }}\]
We know, \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] using this we get
\[\sin \theta \cos \dfrac{\pi }{4} + \cos \theta \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
We have \[\sin (A + B) = \sin A\cos B + \cos A\sin B\] , using this we get
\[\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\]
Therefore, statement II is true.
Hence, the correct answer is option (B) Only II is true
So, the correct answer is “Option B”.
Note: For such questions, where the value of \[\theta \] is given and you need to check whether it is true or not, try to simplify the expression such that you can find the value of \[\theta \] . Most importantly, always remember the trigonometric identities as these help us to get a simplified answer.
I. If \[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\] then \[\theta = n\pi + \dfrac{\pi }{4}\] , \[n \in Z\]
II. \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\] then \[\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \pm \dfrac{1}{{\sqrt 2 }}\]
Complete step-by-step answer:
Given, two expressions
\[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\] and \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
Let us check each expression one by one.
The first expression is \[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\]
\[L.H.S = \sin \left( {\dfrac{\pi }{4}\cot \theta } \right)\] (i)
We know, \[\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)\]
Using this in equation (i), we get
\[L.H.S = \cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}\cot \theta } \right)\]
Equating with the R.H.S we get
\[\cos \left( {\dfrac{\pi }{2} - \dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\]
Equating the angles of cosine, we get
\[\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\tan \theta + \dfrac{\pi }{4}\cot \theta \\
\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}(\tan \theta + \cot \theta ) \\
\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\tan \theta + \dfrac{1}{{\tan \theta }}} \right) \\
\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{\tan \theta }}} \right) \]
We know, \[1 + {\tan ^2}\theta = {\sec ^2}\theta \] using this we get
\[\dfrac{\pi }{2} = \dfrac{\pi }{4}\left( {\dfrac{{{{\sec }^2}\theta }}{{\tan \theta }}} \right) \\
\Rightarrow 2\tan \theta = {\sec ^2}\theta \\
\Rightarrow 2\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right) = \left( {\dfrac{1}{{{{\cos }^2}\theta }}} \right) \]
\[\Rightarrow 2\sin \theta \cos \theta = 1 \\
\Rightarrow \sin 2\theta = 1 \\
\Rightarrow 2\theta = \dfrac{{n\pi }}{2} \\
\Rightarrow \theta = \dfrac{{n\pi }}{4} \]
Where n is any integer
Therefore statement I is incorrect as it says \[\theta = n\pi + \dfrac{\pi }{4}\] but \[\theta = \dfrac{{n\pi }}{4}\] .
Second expression: \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
We can write \[\cot \left( {\dfrac{\pi }{2} - \theta } \right) = \tan \theta \] .
Using this we get
\[\cot \left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
Equating the angles we get,
\[\left( {\dfrac{\pi }{2} - \dfrac{\pi }{2}\sin \theta } \right) = \left( {\dfrac{\pi }{2}\cos \theta } \right)\]
\[\Rightarrow \dfrac{\pi }{2} = \dfrac{\pi }{2}\sin \theta + \dfrac{\pi }{2}\cos \theta \\
\Rightarrow \sin \theta + \cos \theta = 1 \]
Multiplying both sides by \[\dfrac{1}{{\sqrt 2 }}\] , we get
\[\dfrac{1}{{\sqrt 2 }}\sin \theta + \dfrac{1}{{\sqrt 2 }}\cos \theta = \dfrac{1}{{\sqrt 2 }}\]
We know, \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] using this we get
\[\sin \theta \cos \dfrac{\pi }{4} + \cos \theta \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
We have \[\sin (A + B) = \sin A\cos B + \cos A\sin B\] , using this we get
\[\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\]
Therefore, statement II is true.
Hence, the correct answer is option (B) Only II is true
So, the correct answer is “Option B”.
Note: For such questions, where the value of \[\theta \] is given and you need to check whether it is true or not, try to simplify the expression such that you can find the value of \[\theta \] . Most importantly, always remember the trigonometric identities as these help us to get a simplified answer.
I. If \[\sin \left( {\dfrac{\pi }{4}\cot \theta } \right) = \cos \left( {\dfrac{\pi }{4}\tan \theta } \right)\] then \[\theta = n\pi + \dfrac{\pi }{4}\] , \[n \in Z\]
II. \[\tan \left( {\dfrac{\pi }{2}\sin \theta } \right) = \cot \left( {\dfrac{\pi }{2}\cos \theta } \right)\] then \[\sin \left( {\theta + \dfrac{\pi }{4}} \right) = \pm \dfrac{1}{{\sqrt 2 }}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

