
If \[\sin \left[ {{\cot }^{-1}}(x+1) \right]=\cos \left( {{\tan }^{-1}}x \right)\] then find x.
Answer
616.5k+ views
Hint: Put \[{{\cot }^{-1}}\left( x+1 \right)=a\] and \[{{\tan }^{-1}}x=b\]. Substitute these values in their respective trigonometric formula connecting \[\left( \cos ec\theta ,\cot \theta \right)\] and \[\left( sec\theta ,tan\theta \right)\]. Thus get the value for a and b. Substitute and solve for x.
Complete step-by-step answer:
Given to us is the expression \[\sin \left[ {{\cot }^{-1}}\left( x+1 \right) \right]=\cos \left(
{{\tan }^{-1}}x \right)......(1)\]
Let us consider the LHS of the equation.
Let us put \[{{\cot }^{-1}}\left( x+1 \right)=a\]
\[\begin{align}
& \therefore {{\cot }^{-1}}\left( x+1 \right)=a \\
& x+1=\cot a......(2) \\
\end{align}\]
We know the trigonometric formula,
\[\begin{align}
& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\
& \therefore \cos e{{c}^{2}}\theta =1+{{\cot }^{2}}\theta \\
& \therefore \cos ec\theta =\sqrt{1+{{\cot }^{2}}\theta } \\
\end{align}\]
Thus, \[\cos eca=\sqrt{1+{{\cot }^{2}}a}\]
Put cot a = x + 1 in the above equation.
\[\cos eca=\sqrt{1+{{\left( x+1 \right)}^{2}}}\]
We know \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\therefore \cos eca=\sqrt{1+{{x}^{2}}+2x+1}=\sqrt{{{x}^{2}}+2x+2}\]
We know \[\sin a={}^{1}/{}_{\cos eca}\].
\[\begin{align}
& \therefore \sin a=\dfrac{1}{\sqrt{{{x}^{2}}+2x+2}} \\
& \therefore a={{\sin }^{-1}}\dfrac{1}{\sqrt{{{x}^{2}}+2x+2}}.......(3) \\
\end{align}\]
Now let us consider the RHS of the equation.
Put \[{{\tan }^{-1}}x=b\].
\[\therefore x=\tan b\]
We know that \[{{\sec }^{2}}b-{{\tan }^{2}}b=1\]
\[\begin{align}
& \therefore {{\sec }^{2}}b=1+{{\tan }^{2}}b \\
& \sec b=\sqrt{1+{{\tan }^{2}}b} \\
\end{align}\]
Put \[\tan b=x\].
\[\therefore \sec b=\sqrt{1+{{x}^{2}}}\]
We know \[\cos b={}^{1}/{}_{\sec b}\].
\[\begin{align}
& \therefore \cos b=\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
& \therefore b={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right).......(4) \\
\end{align}\]
We have to put \[{{\cot }^{-1}}(x+1)=a\] and \[{{\tan }^{-1}}x=b\]. Thus equation (1) becomes,
\[\begin{align}
& \sin \left[ {{\cot }^{-1}}(x+1) \right]=\cos \left( {{\tan }^{-1}}x \right) \\
& \Rightarrow \sin a=\cos b \\
\end{align}\]
Put the value of equation (3) and (4) in the above expression.
\[\sin \left[ {{\sin }^{-1}}\dfrac{1}{\sqrt{{{x}^{2}}+2x+2}} \right]=\cos \left[ {{\cos
}^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}} \right]\]
Cancel out sin and \[{{\sin }^{-1}}\] from LHS and cos and \[{{\cos }^{-1}}\] from RHS.
We get,
\[\begin{align}
& \dfrac{1}{\sqrt{{{x}^{2}}+2x+2}}=\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
& \sqrt{1+{{x}^{2}}}=\sqrt{{{x}^{2}}+2x+2} \\
& {{\left( \sqrt{1+{{x}^{2}}} \right)}^{2}}={{\left( \sqrt{{{x}^{2}}+2x+2} \right)}^{2}} \\
& \Rightarrow 1+{{x}^{2}}={{x}^{2}}+2x+2 \\
\end{align}\]
Cancel out common terms.
\[\begin{align}
& 2x+2=1 \\
& 2x=1-2 \\
& x={}^{-1}/{}_{2}. \\
\end{align}\]
Thus we got the value of \[x={}^{-1}/{}_{2}.\]
Note: You can also do it using the trigonometric identity \[{{\cot }^{-1}}\theta ={{\sin }^{-1}}\dfrac{1}{\sqrt{1+{{\theta }^{2}}}}\].
Put \[\theta =x+1\].
\[\therefore {{\cot }^{-1}}(x+1)={{\sin }^{-1}}\dfrac{1}{\sqrt{1+{{\left( x+1 \right)}^{2}}}}\]
Similarly, \[{{\tan }^{-1}}\theta ={{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{A}^{2}}}}\]. Put \[\theta =x\].
\[\therefore {{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}}\]
Thus substitute the value of \[{{\cot }^{-1}}(x+1)\] and \[{{\tan }^{-1}}x\] and you get value of x as \[{}^{-1}/{}_{2}\].
Complete step-by-step answer:
Given to us is the expression \[\sin \left[ {{\cot }^{-1}}\left( x+1 \right) \right]=\cos \left(
{{\tan }^{-1}}x \right)......(1)\]
Let us consider the LHS of the equation.
Let us put \[{{\cot }^{-1}}\left( x+1 \right)=a\]
\[\begin{align}
& \therefore {{\cot }^{-1}}\left( x+1 \right)=a \\
& x+1=\cot a......(2) \\
\end{align}\]
We know the trigonometric formula,
\[\begin{align}
& \cos e{{c}^{2}}\theta -{{\cot }^{2}}\theta =1 \\
& \therefore \cos e{{c}^{2}}\theta =1+{{\cot }^{2}}\theta \\
& \therefore \cos ec\theta =\sqrt{1+{{\cot }^{2}}\theta } \\
\end{align}\]
Thus, \[\cos eca=\sqrt{1+{{\cot }^{2}}a}\]
Put cot a = x + 1 in the above equation.
\[\cos eca=\sqrt{1+{{\left( x+1 \right)}^{2}}}\]
We know \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\therefore \cos eca=\sqrt{1+{{x}^{2}}+2x+1}=\sqrt{{{x}^{2}}+2x+2}\]
We know \[\sin a={}^{1}/{}_{\cos eca}\].
\[\begin{align}
& \therefore \sin a=\dfrac{1}{\sqrt{{{x}^{2}}+2x+2}} \\
& \therefore a={{\sin }^{-1}}\dfrac{1}{\sqrt{{{x}^{2}}+2x+2}}.......(3) \\
\end{align}\]
Now let us consider the RHS of the equation.
Put \[{{\tan }^{-1}}x=b\].
\[\therefore x=\tan b\]
We know that \[{{\sec }^{2}}b-{{\tan }^{2}}b=1\]
\[\begin{align}
& \therefore {{\sec }^{2}}b=1+{{\tan }^{2}}b \\
& \sec b=\sqrt{1+{{\tan }^{2}}b} \\
\end{align}\]
Put \[\tan b=x\].
\[\therefore \sec b=\sqrt{1+{{x}^{2}}}\]
We know \[\cos b={}^{1}/{}_{\sec b}\].
\[\begin{align}
& \therefore \cos b=\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
& \therefore b={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right).......(4) \\
\end{align}\]
We have to put \[{{\cot }^{-1}}(x+1)=a\] and \[{{\tan }^{-1}}x=b\]. Thus equation (1) becomes,
\[\begin{align}
& \sin \left[ {{\cot }^{-1}}(x+1) \right]=\cos \left( {{\tan }^{-1}}x \right) \\
& \Rightarrow \sin a=\cos b \\
\end{align}\]
Put the value of equation (3) and (4) in the above expression.
\[\sin \left[ {{\sin }^{-1}}\dfrac{1}{\sqrt{{{x}^{2}}+2x+2}} \right]=\cos \left[ {{\cos
}^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}} \right]\]
Cancel out sin and \[{{\sin }^{-1}}\] from LHS and cos and \[{{\cos }^{-1}}\] from RHS.
We get,
\[\begin{align}
& \dfrac{1}{\sqrt{{{x}^{2}}+2x+2}}=\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
& \sqrt{1+{{x}^{2}}}=\sqrt{{{x}^{2}}+2x+2} \\
& {{\left( \sqrt{1+{{x}^{2}}} \right)}^{2}}={{\left( \sqrt{{{x}^{2}}+2x+2} \right)}^{2}} \\
& \Rightarrow 1+{{x}^{2}}={{x}^{2}}+2x+2 \\
\end{align}\]
Cancel out common terms.
\[\begin{align}
& 2x+2=1 \\
& 2x=1-2 \\
& x={}^{-1}/{}_{2}. \\
\end{align}\]
Thus we got the value of \[x={}^{-1}/{}_{2}.\]
Note: You can also do it using the trigonometric identity \[{{\cot }^{-1}}\theta ={{\sin }^{-1}}\dfrac{1}{\sqrt{1+{{\theta }^{2}}}}\].
Put \[\theta =x+1\].
\[\therefore {{\cot }^{-1}}(x+1)={{\sin }^{-1}}\dfrac{1}{\sqrt{1+{{\left( x+1 \right)}^{2}}}}\]
Similarly, \[{{\tan }^{-1}}\theta ={{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{A}^{2}}}}\]. Put \[\theta =x\].
\[\therefore {{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{1}{\sqrt{1+{{x}^{2}}}}\]
Thus substitute the value of \[{{\cot }^{-1}}(x+1)\] and \[{{\tan }^{-1}}x\] and you get value of x as \[{}^{-1}/{}_{2}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

