
If \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], then \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] is equal to
(a) \[\dfrac{{2\pi }}{3}\]
(b) \[\dfrac{\pi }{3}\]
(c) \[\dfrac{\pi }{6}\]
(d) \[\pi \]
Answer
571.5k+ views
Hint:
Here, we need to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]. We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle. Then, we will rewrite the given equation. Finally, we will simplify the equation to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Formula Used: The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Complete step by step solution:
We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle.
The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Substituting \[\theta = x\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}x\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Substituting \[\theta = y\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}y\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y - {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Now, we will find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Substituting \[{\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\] and \[{\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\] in the equation \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], we get
\[ \Rightarrow \dfrac{\pi }{2} - {\cos ^{ - 1}}x + \dfrac{\pi }{2} - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Adding the terms of the expression, we get
\[ \Rightarrow \dfrac{{\pi + \pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Thus, we get
\[\begin{array}{l} \Rightarrow \dfrac{{2\pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\\ \Rightarrow \pi - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\end{array}\]
Rewriting the expression, we get
\[ \Rightarrow \pi - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
We can rewrite the equation as
\[ \Rightarrow \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Subtracting the terms of the expression, we get
\[ \Rightarrow \dfrac{{3\pi - 2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow \dfrac{\pi }{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Note:
We can rewrite the equations \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\] and \[{\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\] as \[{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\] and \[{\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y\] respectively.
Adding the two equations, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}x + \dfrac{\pi }{2} - {\sin ^{ - 1}}y\]
Adding the terms, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{\pi + \pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{2\pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\end{array}\]
Factoring out \[ - 1\] from the terms of the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right)\]
It is given that \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\].
Substituting \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\] in the equation, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {\dfrac{{2\pi }}{3}} \right)\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - \dfrac{{2\pi }}{3}\end{array}\]
The L.C.M. of 1 and 3 is 3.
Rewriting the terms with a denominator of 3, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3}\]
Subtracting the terms, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{3}\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Here, we need to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]. We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle. Then, we will rewrite the given equation. Finally, we will simplify the equation to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Formula Used: The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Complete step by step solution:
We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle.
The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Substituting \[\theta = x\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}x\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Substituting \[\theta = y\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}y\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y - {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Now, we will find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Substituting \[{\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\] and \[{\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\] in the equation \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], we get
\[ \Rightarrow \dfrac{\pi }{2} - {\cos ^{ - 1}}x + \dfrac{\pi }{2} - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Adding the terms of the expression, we get
\[ \Rightarrow \dfrac{{\pi + \pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Thus, we get
\[\begin{array}{l} \Rightarrow \dfrac{{2\pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\\ \Rightarrow \pi - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\end{array}\]
Rewriting the expression, we get
\[ \Rightarrow \pi - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
We can rewrite the equation as
\[ \Rightarrow \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Subtracting the terms of the expression, we get
\[ \Rightarrow \dfrac{{3\pi - 2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow \dfrac{\pi }{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Note:
We can rewrite the equations \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\] and \[{\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\] as \[{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\] and \[{\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y\] respectively.
Adding the two equations, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}x + \dfrac{\pi }{2} - {\sin ^{ - 1}}y\]
Adding the terms, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{\pi + \pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{2\pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\end{array}\]
Factoring out \[ - 1\] from the terms of the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right)\]
It is given that \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\].
Substituting \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\] in the equation, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {\dfrac{{2\pi }}{3}} \right)\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - \dfrac{{2\pi }}{3}\end{array}\]
The L.C.M. of 1 and 3 is 3.
Rewriting the terms with a denominator of 3, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3}\]
Subtracting the terms, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{3}\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

