
If \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], then \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] is equal to
(a) \[\dfrac{{2\pi }}{3}\]
(b) \[\dfrac{\pi }{3}\]
(c) \[\dfrac{\pi }{6}\]
(d) \[\pi \]
Answer
483.3k+ views
Hint:
Here, we need to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]. We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle. Then, we will rewrite the given equation. Finally, we will simplify the equation to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Formula Used: The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Complete step by step solution:
We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle.
The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Substituting \[\theta = x\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}x\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Substituting \[\theta = y\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}y\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y - {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Now, we will find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Substituting \[{\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\] and \[{\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\] in the equation \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], we get
\[ \Rightarrow \dfrac{\pi }{2} - {\cos ^{ - 1}}x + \dfrac{\pi }{2} - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Adding the terms of the expression, we get
\[ \Rightarrow \dfrac{{\pi + \pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Thus, we get
\[\begin{array}{l} \Rightarrow \dfrac{{2\pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\\ \Rightarrow \pi - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\end{array}\]
Rewriting the expression, we get
\[ \Rightarrow \pi - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
We can rewrite the equation as
\[ \Rightarrow \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Subtracting the terms of the expression, we get
\[ \Rightarrow \dfrac{{3\pi - 2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow \dfrac{\pi }{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Note:
We can rewrite the equations \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\] and \[{\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\] as \[{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\] and \[{\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y\] respectively.
Adding the two equations, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}x + \dfrac{\pi }{2} - {\sin ^{ - 1}}y\]
Adding the terms, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{\pi + \pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{2\pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\end{array}\]
Factoring out \[ - 1\] from the terms of the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right)\]
It is given that \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\].
Substituting \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\] in the equation, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {\dfrac{{2\pi }}{3}} \right)\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - \dfrac{{2\pi }}{3}\end{array}\]
The L.C.M. of 1 and 3 is 3.
Rewriting the terms with a denominator of 3, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3}\]
Subtracting the terms, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{3}\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Here, we need to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]. We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle. Then, we will rewrite the given equation. Finally, we will simplify the equation to find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Formula Used: The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Complete step by step solution:
We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle.
The sum of the sine inverse of an angle \[\theta \] and the cosine inverse of the angle \[\theta \] is given by \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\].
Substituting \[\theta = x\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}x\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\]
Substituting \[\theta = y\] in the formula \[{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}\], we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\]
Subtracting \[{\cos ^{ - 1}}y\] from both sides of the equation, we get
\[ \Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y - {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\]
Now, we will find the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\].
Substituting \[{\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x\] and \[{\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y\] in the equation \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], we get
\[ \Rightarrow \dfrac{\pi }{2} - {\cos ^{ - 1}}x + \dfrac{\pi }{2} - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Adding the terms of the expression, we get
\[ \Rightarrow \dfrac{{\pi + \pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\]
Thus, we get
\[\begin{array}{l} \Rightarrow \dfrac{{2\pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\\ \Rightarrow \pi - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\end{array}\]
Rewriting the expression, we get
\[ \Rightarrow \pi - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
We can rewrite the equation as
\[ \Rightarrow \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Subtracting the terms of the expression, we get
\[ \Rightarrow \dfrac{{3\pi - 2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Thus, we get
\[ \Rightarrow \dfrac{\pi }{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Note:
We can rewrite the equations \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\] and \[{\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}\] as \[{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\] and \[{\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y\] respectively.
Adding the two equations, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}x + \dfrac{\pi }{2} - {\sin ^{ - 1}}y\]
Adding the terms, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{\pi + \pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{2\pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\end{array}\]
Factoring out \[ - 1\] from the terms of the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right)\]
It is given that \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\].
Substituting \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\] in the equation, we get
\[\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {\dfrac{{2\pi }}{3}} \right)\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - \dfrac{{2\pi }}{3}\end{array}\]
The L.C.M. of 1 and 3 is 3.
Rewriting the terms with a denominator of 3, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3}\]
Subtracting the terms, we get
\[ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{3}\]
Therefore, we get the value of the expression \[{\cos ^{ - 1}}x + {\cos ^{ - 1}}y\] as \[\dfrac{\pi }{3}\].
Thus, the correct option is option (b).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What is the difference between superposition and e class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
