
If ${\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right) = \pi $ , then prove that $x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz$
Answer
614.7k+ views
Hint: In this question, we use the concept of inverse trigonometry and also use some basic trigonometric identities. First we assume ${\sin ^{ - 1}}x,{\sin ^{ - 1}}y,{\sin ^{ - 1}}z$ are some angle A, B, C and make a relation $A + B + C = \pi $ and then we use identities $\sin 2x = 2\sin x\cos x$ , $\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$ and $\cos x - \cos y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{y - x}}{2}} \right)$.
Complete step-by-step solution:
Given, ${\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right) = \pi $
Let, ${\sin ^{ - 1}}\left( x \right) = A \Rightarrow x = \sin A$
${\sin ^{ - 1}}\left( y \right) = B \Rightarrow y = \sin B$
${\sin ^{ - 1}}\left( z \right) = C \Rightarrow z = \sin C$
Now, $A + B + C = \pi ..............\left( 1 \right)$ where $A,B,C \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$
To prove $x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz$ this equation . So, we have to prove the Left hand side (LHS) is equal to the right hand side (RHS).
Now take a $LHS = x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} $
Put the value of x, y and z in the left hand side (LHS).
$LHS = \sin A\sqrt {1 - {{\sin }^2}A} + \sin B\sqrt {1 - {{\sin }^2}B} + \sin C\sqrt {1 - {{\sin }^2}C} $
We have to use an identity $\cos x = \sqrt {1 - {{\sin }^2}x} $
$
LHS = \sin A\cos A + \sin B\cos B + \sin C\cos C \\
LHS = \dfrac{{\left( {2\sin A\cos A + 2\sin B\cos B} \right)}}{2} + \sin C\cos C \\
$
Now use identity $\sin 2x = 2\sin x\cos x$
$LHS = \dfrac{{\sin 2A + \sin 2B}}{2} + \sin C\cos C$
Now use identity $\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
\[
LHS = \dfrac{{2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right)}}{2} + \sin C\cos C \\
LHS = \sin \left( {A + B} \right)\cos \left( {A - B} \right) + \sin C\cos C \\
\]
From (1) equation, $A + B = \pi - C$
\[LHS = \sin \left( {\pi - C} \right)\cos \left( {A - B} \right) + \sin C\cos C\]
We Know, \[\sin \left( {\pi - C} \right) = \sin C\]
\[LHS = \sin C\cos \left( {A - B} \right) + \sin C\cos C\]
Take a common \[\sin C\] as common,
\[LHS = \sin C\left( {\cos \left( {A - B} \right) + \cos C} \right)\]
From (1) equation, $C = \pi - A - B$
\[LHS = \sin C\left( {\cos \left( {A - B} \right) + \cos \left( {\pi - A - B} \right)} \right)\]
We Know, \[\cos \left( {\pi - C} \right) = - \cos C\]
\[LHS = \sin C\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)\]
Now use identity $\cos x - \cos y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{y - x}}{2}} \right)$
\[
LHS = \sin C\left( {2\sin \left( {\dfrac{{A - B + A + B}}{2}} \right)\sin \left( {\dfrac{{A + B - A + B}}{2}} \right)} \right) \\
LHS = \sin C\left( {2\sin \left( A \right)\sin \left( B \right)} \right) \\
LHS = 2\sin A\sin B\sin C \\
\]
Now put the value of sinA ,sinB and sinC.
\[LHS = 2xyz = RHS\]
So, its proved $x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz$.
Note: In such types of problems we have to prove left hand side (LHS) equal to right hand side (RHS). In LHS we use $x = \sin A,y = \sin B,z = \sin C$ (mentioned in above) and also use trigonometric identities. So, we will get the required answer.
Complete step-by-step solution:
Given, ${\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right) = \pi $
Let, ${\sin ^{ - 1}}\left( x \right) = A \Rightarrow x = \sin A$
${\sin ^{ - 1}}\left( y \right) = B \Rightarrow y = \sin B$
${\sin ^{ - 1}}\left( z \right) = C \Rightarrow z = \sin C$
Now, $A + B + C = \pi ..............\left( 1 \right)$ where $A,B,C \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$
To prove $x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz$ this equation . So, we have to prove the Left hand side (LHS) is equal to the right hand side (RHS).
Now take a $LHS = x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} $
Put the value of x, y and z in the left hand side (LHS).
$LHS = \sin A\sqrt {1 - {{\sin }^2}A} + \sin B\sqrt {1 - {{\sin }^2}B} + \sin C\sqrt {1 - {{\sin }^2}C} $
We have to use an identity $\cos x = \sqrt {1 - {{\sin }^2}x} $
$
LHS = \sin A\cos A + \sin B\cos B + \sin C\cos C \\
LHS = \dfrac{{\left( {2\sin A\cos A + 2\sin B\cos B} \right)}}{2} + \sin C\cos C \\
$
Now use identity $\sin 2x = 2\sin x\cos x$
$LHS = \dfrac{{\sin 2A + \sin 2B}}{2} + \sin C\cos C$
Now use identity $\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)$
\[
LHS = \dfrac{{2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right)}}{2} + \sin C\cos C \\
LHS = \sin \left( {A + B} \right)\cos \left( {A - B} \right) + \sin C\cos C \\
\]
From (1) equation, $A + B = \pi - C$
\[LHS = \sin \left( {\pi - C} \right)\cos \left( {A - B} \right) + \sin C\cos C\]
We Know, \[\sin \left( {\pi - C} \right) = \sin C\]
\[LHS = \sin C\cos \left( {A - B} \right) + \sin C\cos C\]
Take a common \[\sin C\] as common,
\[LHS = \sin C\left( {\cos \left( {A - B} \right) + \cos C} \right)\]
From (1) equation, $C = \pi - A - B$
\[LHS = \sin C\left( {\cos \left( {A - B} \right) + \cos \left( {\pi - A - B} \right)} \right)\]
We Know, \[\cos \left( {\pi - C} \right) = - \cos C\]
\[LHS = \sin C\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)\]
Now use identity $\cos x - \cos y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{y - x}}{2}} \right)$
\[
LHS = \sin C\left( {2\sin \left( {\dfrac{{A - B + A + B}}{2}} \right)\sin \left( {\dfrac{{A + B - A + B}}{2}} \right)} \right) \\
LHS = \sin C\left( {2\sin \left( A \right)\sin \left( B \right)} \right) \\
LHS = 2\sin A\sin B\sin C \\
\]
Now put the value of sinA ,sinB and sinC.
\[LHS = 2xyz = RHS\]
So, its proved $x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz$.
Note: In such types of problems we have to prove left hand side (LHS) equal to right hand side (RHS). In LHS we use $x = \sin A,y = \sin B,z = \sin C$ (mentioned in above) and also use trigonometric identities. So, we will get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

