
If \[\sec \theta = x + \dfrac{1}{{4x}}\] , then the value of $ \sec \theta + \tan \theta $ is equal to
Answer
602.4k+ views
Hint: We can use some of the basic trigonometric formulas which are related to the functions mentioned in the question for example $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $ use this formula to find the value of an unknown trigonometric function i.e. $\tan\theta$ in terms of ‘x’. THen we just need to add both.
Complete step-by-step answer:
According to the given information \[\sec \theta = x + \dfrac{1}{{4x}}\] ---(equation 1)
To find the value of $ \sec \theta + \tan \theta $ we need the value of \[\tan \theta \]
Let $ \sec \theta + \tan \theta $ be the equation 2
So by the trigonometric formula $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
$ \Rightarrow $ \[{\tan ^2}\theta = {\sec ^2}\theta - 1\]
Now let put the value of $ \sec \theta $ by the equation 1
\[{\tan ^2}\theta = {(x + \dfrac{1}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = {(\dfrac{{4{x^2} + 1}}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2}}}{{16{x^2}}} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2} - 16{x^2}}}{{16{x^2}}}\] \[ = \dfrac{{16{x^4} + 1 + - 8{x^2}}}{{16{x^2}}}\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}\]
Applying square root on both sides
$ \Rightarrow $ \[\sqrt {{{\tan }^2}\theta } = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}} \]
$ \Rightarrow $ \[\tan \theta = \dfrac{{4{x^2} - 1}}{{4x}}\] = $ x - \dfrac{1}{{4x}} $
Now put the value of $ \sec \theta $ and $ \tan \theta $ in equation 2
$ \Rightarrow $ $ \sec \theta + \tan \theta $ = \[x + \dfrac{1}{{4x}}\] + $ x - \dfrac{1}{{4x}} $
$ \Rightarrow $ $ \sec \theta + \tan \theta = 2x $
Note: In these types of questions use the basic trigonometric formula like $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $ to get the value of \[\tan \theta \] then to simplify the value of \[\tan \theta \] the simplest form to use the value in the question after finding the value of \[\tan \theta \] directly use it and find the value of $ \sec \theta + \tan \theta $ .
Complete step-by-step answer:
According to the given information \[\sec \theta = x + \dfrac{1}{{4x}}\] ---(equation 1)
To find the value of $ \sec \theta + \tan \theta $ we need the value of \[\tan \theta \]
Let $ \sec \theta + \tan \theta $ be the equation 2
So by the trigonometric formula $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
$ \Rightarrow $ \[{\tan ^2}\theta = {\sec ^2}\theta - 1\]
Now let put the value of $ \sec \theta $ by the equation 1
\[{\tan ^2}\theta = {(x + \dfrac{1}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = {(\dfrac{{4{x^2} + 1}}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2}}}{{16{x^2}}} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2} - 16{x^2}}}{{16{x^2}}}\] \[ = \dfrac{{16{x^4} + 1 + - 8{x^2}}}{{16{x^2}}}\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}\]
Applying square root on both sides
$ \Rightarrow $ \[\sqrt {{{\tan }^2}\theta } = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}} \]
$ \Rightarrow $ \[\tan \theta = \dfrac{{4{x^2} - 1}}{{4x}}\] = $ x - \dfrac{1}{{4x}} $
Now put the value of $ \sec \theta $ and $ \tan \theta $ in equation 2
$ \Rightarrow $ $ \sec \theta + \tan \theta $ = \[x + \dfrac{1}{{4x}}\] + $ x - \dfrac{1}{{4x}} $
$ \Rightarrow $ $ \sec \theta + \tan \theta = 2x $
Note: In these types of questions use the basic trigonometric formula like $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $ to get the value of \[\tan \theta \] then to simplify the value of \[\tan \theta \] the simplest form to use the value in the question after finding the value of \[\tan \theta \] directly use it and find the value of $ \sec \theta + \tan \theta $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

