
If \[\sec \theta = x + \dfrac{1}{{4x}}\] , then the value of $ \sec \theta + \tan \theta $ is equal to
Answer
586.8k+ views
Hint: We can use some of the basic trigonometric formulas which are related to the functions mentioned in the question for example $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $ use this formula to find the value of an unknown trigonometric function i.e. $\tan\theta$ in terms of ‘x’. THen we just need to add both.
Complete step-by-step answer:
According to the given information \[\sec \theta = x + \dfrac{1}{{4x}}\] ---(equation 1)
To find the value of $ \sec \theta + \tan \theta $ we need the value of \[\tan \theta \]
Let $ \sec \theta + \tan \theta $ be the equation 2
So by the trigonometric formula $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
$ \Rightarrow $ \[{\tan ^2}\theta = {\sec ^2}\theta - 1\]
Now let put the value of $ \sec \theta $ by the equation 1
\[{\tan ^2}\theta = {(x + \dfrac{1}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = {(\dfrac{{4{x^2} + 1}}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2}}}{{16{x^2}}} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2} - 16{x^2}}}{{16{x^2}}}\] \[ = \dfrac{{16{x^4} + 1 + - 8{x^2}}}{{16{x^2}}}\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}\]
Applying square root on both sides
$ \Rightarrow $ \[\sqrt {{{\tan }^2}\theta } = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}} \]
$ \Rightarrow $ \[\tan \theta = \dfrac{{4{x^2} - 1}}{{4x}}\] = $ x - \dfrac{1}{{4x}} $
Now put the value of $ \sec \theta $ and $ \tan \theta $ in equation 2
$ \Rightarrow $ $ \sec \theta + \tan \theta $ = \[x + \dfrac{1}{{4x}}\] + $ x - \dfrac{1}{{4x}} $
$ \Rightarrow $ $ \sec \theta + \tan \theta = 2x $
Note: In these types of questions use the basic trigonometric formula like $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $ to get the value of \[\tan \theta \] then to simplify the value of \[\tan \theta \] the simplest form to use the value in the question after finding the value of \[\tan \theta \] directly use it and find the value of $ \sec \theta + \tan \theta $ .
Complete step-by-step answer:
According to the given information \[\sec \theta = x + \dfrac{1}{{4x}}\] ---(equation 1)
To find the value of $ \sec \theta + \tan \theta $ we need the value of \[\tan \theta \]
Let $ \sec \theta + \tan \theta $ be the equation 2
So by the trigonometric formula $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $
$ \Rightarrow $ \[{\tan ^2}\theta = {\sec ^2}\theta - 1\]
Now let put the value of $ \sec \theta $ by the equation 1
\[{\tan ^2}\theta = {(x + \dfrac{1}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = {(\dfrac{{4{x^2} + 1}}{{4x}})^2} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2}}}{{16{x^2}}} - 1\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2} - 16{x^2}}}{{16{x^2}}}\] \[ = \dfrac{{16{x^4} + 1 + - 8{x^2}}}{{16{x^2}}}\]
$ \Rightarrow $ \[{\tan ^2}\theta = \dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}\]
Applying square root on both sides
$ \Rightarrow $ \[\sqrt {{{\tan }^2}\theta } = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}} \]
$ \Rightarrow $ \[\tan \theta = \dfrac{{4{x^2} - 1}}{{4x}}\] = $ x - \dfrac{1}{{4x}} $
Now put the value of $ \sec \theta $ and $ \tan \theta $ in equation 2
$ \Rightarrow $ $ \sec \theta + \tan \theta $ = \[x + \dfrac{1}{{4x}}\] + $ x - \dfrac{1}{{4x}} $
$ \Rightarrow $ $ \sec \theta + \tan \theta = 2x $
Note: In these types of questions use the basic trigonometric formula like $ {\sec ^2}\theta - {\tan ^2}\theta = 1 $ to get the value of \[\tan \theta \] then to simplify the value of \[\tan \theta \] the simplest form to use the value in the question after finding the value of \[\tan \theta \] directly use it and find the value of $ \sec \theta + \tan \theta $ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

