
If $\sec \theta =x+\dfrac{1}{4x}$, prove that $\sec \theta +\tan \theta =2x$ or $\dfrac{1}{2x}$.
Answer
621k+ views
Hint: We have been given $\sec \theta =x+\dfrac{1}{4x}$. So use the formula ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $ and simplify. You will get the value of $\tan \theta $. After that add $\sec \theta $ and $\tan \theta $. You will get the answer.
Complete step-by-step answer:
Now taking $\sec \theta =x+\dfrac{1}{4x}$,
We have been given $\sec \theta $ and from that we will find $\tan \theta $.
We know that ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $.
So substituting value of $\sec \theta $ in above identity we get,
\[{{\left( x+\dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \]
Simplifying we get,
\[\begin{align}
& {{x}^{2}}+2(x)\dfrac{1}{4x}+{{\left( \dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\dfrac{1}{2}+\left( \dfrac{1}{16{{x}^{2}}} \right)-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\left( \dfrac{1}{16{{x}^{2}}} \right)-\dfrac{1}{2}={{\tan }^{2}}\theta \\
& {{\left( x-\dfrac{1}{4x} \right)}^{2}}={{\tan }^{2}}\theta \\
\end{align}\]
So taking square root of both sides we get,
\[\tan \theta =\pm \left( x-\dfrac{1}{4x} \right)\]
We get,
\[\tan \theta =\left( x-\dfrac{1}{4x} \right)\] and \[\tan \theta =-x+\dfrac{1}{4x}\]
So now we have got $\tan \theta $.
Now adding $\tan \theta $ and $\sec \theta $,
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}\pm \left( x-\dfrac{1}{4x} \right)$
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}+\left( x-\dfrac{1}{4x} \right)$ or $\sec \theta +\tan \theta =x+\dfrac{1}{4x}-\left( x-\dfrac{1}{4x} \right)$
Simplifying we get,
$\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$
So we get the values $\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$.
Hence proved.
Note: Read the question carefully. Do not make any silly mistakes. Also, you must be familiar with the trigonometric identities. Do not confuse yourself while simplifying. Also, take care that no terms are missing and do not jumble with the signs.
Complete step-by-step answer:
Now taking $\sec \theta =x+\dfrac{1}{4x}$,
We have been given $\sec \theta $ and from that we will find $\tan \theta $.
We know that ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $.
So substituting value of $\sec \theta $ in above identity we get,
\[{{\left( x+\dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \]
Simplifying we get,
\[\begin{align}
& {{x}^{2}}+2(x)\dfrac{1}{4x}+{{\left( \dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\dfrac{1}{2}+\left( \dfrac{1}{16{{x}^{2}}} \right)-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\left( \dfrac{1}{16{{x}^{2}}} \right)-\dfrac{1}{2}={{\tan }^{2}}\theta \\
& {{\left( x-\dfrac{1}{4x} \right)}^{2}}={{\tan }^{2}}\theta \\
\end{align}\]
So taking square root of both sides we get,
\[\tan \theta =\pm \left( x-\dfrac{1}{4x} \right)\]
We get,
\[\tan \theta =\left( x-\dfrac{1}{4x} \right)\] and \[\tan \theta =-x+\dfrac{1}{4x}\]
So now we have got $\tan \theta $.
Now adding $\tan \theta $ and $\sec \theta $,
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}\pm \left( x-\dfrac{1}{4x} \right)$
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}+\left( x-\dfrac{1}{4x} \right)$ or $\sec \theta +\tan \theta =x+\dfrac{1}{4x}-\left( x-\dfrac{1}{4x} \right)$
Simplifying we get,
$\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$
So we get the values $\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$.
Hence proved.
Note: Read the question carefully. Do not make any silly mistakes. Also, you must be familiar with the trigonometric identities. Do not confuse yourself while simplifying. Also, take care that no terms are missing and do not jumble with the signs.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

