Answer
Verified
495k+ views
Hint: We have been given $\sec \theta =x+\dfrac{1}{4x}$. So use the formula ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $ and simplify. You will get the value of $\tan \theta $. After that add $\sec \theta $ and $\tan \theta $. You will get the answer.
Complete step-by-step answer:
Now taking $\sec \theta =x+\dfrac{1}{4x}$,
We have been given $\sec \theta $ and from that we will find $\tan \theta $.
We know that ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $.
So substituting value of $\sec \theta $ in above identity we get,
\[{{\left( x+\dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \]
Simplifying we get,
\[\begin{align}
& {{x}^{2}}+2(x)\dfrac{1}{4x}+{{\left( \dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\dfrac{1}{2}+\left( \dfrac{1}{16{{x}^{2}}} \right)-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\left( \dfrac{1}{16{{x}^{2}}} \right)-\dfrac{1}{2}={{\tan }^{2}}\theta \\
& {{\left( x-\dfrac{1}{4x} \right)}^{2}}={{\tan }^{2}}\theta \\
\end{align}\]
So taking square root of both sides we get,
\[\tan \theta =\pm \left( x-\dfrac{1}{4x} \right)\]
We get,
\[\tan \theta =\left( x-\dfrac{1}{4x} \right)\] and \[\tan \theta =-x+\dfrac{1}{4x}\]
So now we have got $\tan \theta $.
Now adding $\tan \theta $ and $\sec \theta $,
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}\pm \left( x-\dfrac{1}{4x} \right)$
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}+\left( x-\dfrac{1}{4x} \right)$ or $\sec \theta +\tan \theta =x+\dfrac{1}{4x}-\left( x-\dfrac{1}{4x} \right)$
Simplifying we get,
$\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$
So we get the values $\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$.
Hence proved.
Note: Read the question carefully. Do not make any silly mistakes. Also, you must be familiar with the trigonometric identities. Do not confuse yourself while simplifying. Also, take care that no terms are missing and do not jumble with the signs.
Complete step-by-step answer:
Now taking $\sec \theta =x+\dfrac{1}{4x}$,
We have been given $\sec \theta $ and from that we will find $\tan \theta $.
We know that ${{\sec }^{2}}\theta -1={{\tan }^{2}}\theta $.
So substituting value of $\sec \theta $ in above identity we get,
\[{{\left( x+\dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \]
Simplifying we get,
\[\begin{align}
& {{x}^{2}}+2(x)\dfrac{1}{4x}+{{\left( \dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\dfrac{1}{2}+\left( \dfrac{1}{16{{x}^{2}}} \right)-1={{\tan }^{2}}\theta \\
& {{x}^{2}}+\left( \dfrac{1}{16{{x}^{2}}} \right)-\dfrac{1}{2}={{\tan }^{2}}\theta \\
& {{\left( x-\dfrac{1}{4x} \right)}^{2}}={{\tan }^{2}}\theta \\
\end{align}\]
So taking square root of both sides we get,
\[\tan \theta =\pm \left( x-\dfrac{1}{4x} \right)\]
We get,
\[\tan \theta =\left( x-\dfrac{1}{4x} \right)\] and \[\tan \theta =-x+\dfrac{1}{4x}\]
So now we have got $\tan \theta $.
Now adding $\tan \theta $ and $\sec \theta $,
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}\pm \left( x-\dfrac{1}{4x} \right)$
$\sec \theta +\tan \theta =x+\dfrac{1}{4x}+\left( x-\dfrac{1}{4x} \right)$ or $\sec \theta +\tan \theta =x+\dfrac{1}{4x}-\left( x-\dfrac{1}{4x} \right)$
Simplifying we get,
$\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$
So we get the values $\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$.
Hence proved.
Note: Read the question carefully. Do not make any silly mistakes. Also, you must be familiar with the trigonometric identities. Do not confuse yourself while simplifying. Also, take care that no terms are missing and do not jumble with the signs.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it