
If \[\sec \theta +\tan \theta =p\], then find the value of \[\csc \theta \].
Answer
615.6k+ views
Hint: To find \[\csc \theta \], convert the whole equation into \[\sin \theta \] and square the expression. Put \[x=\sin \theta \] and solve the quadratic equation formed.
Complete step-by-step answer:
We have been given that, \[\sec \theta +\tan \theta =p\].
Let us convert \[\tan \theta \] and \[\sec \theta \] into \[\sin \theta \] and \[\cos \theta \].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\begin{align}
& \therefore \dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos \theta }=p \\
& \Rightarrow \dfrac{1+\sin \theta }{\cos \theta }=p \\
\end{align}\]
We need to find \[\csc \theta \]. To find \[\csc \theta \], we need to convert everything into \[\sin \theta \]. Thus let us square both sides of the expression we get.
\[\begin{align}
& {{\left( \dfrac{1+\sin \theta }{\cos \theta } \right)}^{2}}={{p}^{2}} \\
& \Rightarrow \dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }={{p}^{2}} \\
\end{align}\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\therefore \dfrac{1+2\sin \theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }={{p}^{2}}\]
We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
\[\therefore {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \]
Cross multiply and simplify the expression.
\[\begin{align}
& 1+2\sin \theta +{{\sin }^{2}}\theta ={{p}^{2}}{{\cos }^{2}}\theta \\
& 1+2\sin \theta +{{\sin }^{2}}\theta ={{p}^{2}}\left( 1-{{\sin }^{2}}\theta \right) \\
& 1+2\sin \theta +{{\sin }^{2}}\theta ={{p}^{2}}-{{p}^{2}}{{\sin }^{2}}\theta -(1) \\
\end{align}\]
Let us put, \[x=\sin \theta \] in equation (1).
\[\begin{align}
& 1+2x+{{x}^{2}}={{p}^{2}}-{{p}^{2}}x \\
& \Rightarrow 1+2x+{{x}^{2}}+p{{x}^{2}}-{{p}^{2}}=0 \\
& {{x}^{2}}\left( {{p}^{2}}+1 \right)+2x+\left( 1-{{p}^{2}} \right)=0-(2) \\
\end{align}\]
The above equation is in the form of a quadratic equation \[a{{x}^{2}}+bx+c=0\]. Let’s compare both the equations and we get, \[a={{p}^{2}}+1\], b = 2, \[c=1-{{p}^{2}}\].
Thus substitute these values in the quadratic formula, \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\].
\[\begin{align}
& x=\dfrac{-1\pm \sqrt{{{2}^{2}}-4\left( {{p}^{2}}+1 \right)\left( 1-{{p}^{2}} \right)}}{2\left( 1+{{p}^{2}} \right)} \\
& x=\dfrac{-2\pm \sqrt{4-4\left( 1+{{p}^{2}} \right)\left( 1-{{p}^{2}} \right)}}{2\left( 1+{{p}^{2}} \right)}=\dfrac{-2\pm 2\sqrt{1-\left( 1+{{p}^{2}} \right)\left( 1-{{p}^{2}} \right)}}{2\left( 1+{{p}^{2}} \right)} \\
\end{align}\]
Cancel out 2 from numerator and denominator.
\[\begin{align}
& x=\dfrac{-1\pm \sqrt{1-\left( {{1}^{2}}-{{\left( {{p}^{2}} \right)}^{2}} \right)}}{\left( 1+{{p}^{2}} \right)}=\dfrac{-1\pm \sqrt{1-\left( 1-{{p}^{4}} \right)}}{\left( 1+{{p}^{2}} \right)} \\
& \because \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}} \\
\end{align}\]
Similarly, \[\left( 1-{{p}^{2}} \right)\left( 1+{{p}^{2}} \right)=1-{{p}^{4}}\].
\[\therefore x=\dfrac{-1\pm \sqrt{1-1+{{p}^{4}}}}{1+{{p}^{2}}}=\dfrac{-1\pm \sqrt{{{p}^{4}}}}{1+{{p}^{2}}}=\dfrac{-1\pm {{p}^{2}}}{1+{{p}^{2}}}\]
Thus put \[x=\sin \theta \]. We get,
\[\sin \theta =\dfrac{-1\pm {{p}^{2}}}{\left( 1+{{p}^{2}} \right)}\]
Let us first consider, \[\sin \theta =\dfrac{-1+{{p}^{2}}}{\left( 1+{{p}^{2}} \right)}\].
\[\therefore \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}\]
We know, \[\csc =\dfrac{1}{\sin \theta }\].
\[\therefore \csc =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1}\]
Now let us consider the case where, \[\sin \theta =\dfrac{-1-{{p}^{2}}}{1+{{p}^{2}}}\].
\[\begin{align}
& \therefore \sin \theta =\dfrac{-\left( 1+{{p}^{2}} \right)}{\left( 1+{{p}^{2}} \right)} \\
& \therefore \sin \theta =-1 \\
& \csc =\dfrac{1}{\sin \theta }=-1 \\
\end{align}\]
Thus we got the value of \[\csc \theta \].
Note: Here we put, \[x=\sin \theta \], in order to make the simplification easier. If we are directly processing with \[\sin \theta \], then the solution becomes complex. Similarly, we have used basic trigonometric formulas here which you should remember.
Complete step-by-step answer:
We have been given that, \[\sec \theta +\tan \theta =p\].
Let us convert \[\tan \theta \] and \[\sec \theta \] into \[\sin \theta \] and \[\cos \theta \].
We know that, \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] and \[\sec \theta =\dfrac{1}{\cos \theta }\].
\[\begin{align}
& \therefore \dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos \theta }=p \\
& \Rightarrow \dfrac{1+\sin \theta }{\cos \theta }=p \\
\end{align}\]
We need to find \[\csc \theta \]. To find \[\csc \theta \], we need to convert everything into \[\sin \theta \]. Thus let us square both sides of the expression we get.
\[\begin{align}
& {{\left( \dfrac{1+\sin \theta }{\cos \theta } \right)}^{2}}={{p}^{2}} \\
& \Rightarrow \dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }={{p}^{2}} \\
\end{align}\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]
\[\therefore \dfrac{1+2\sin \theta +{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }={{p}^{2}}\]
We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\]
\[\therefore {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \]
Cross multiply and simplify the expression.
\[\begin{align}
& 1+2\sin \theta +{{\sin }^{2}}\theta ={{p}^{2}}{{\cos }^{2}}\theta \\
& 1+2\sin \theta +{{\sin }^{2}}\theta ={{p}^{2}}\left( 1-{{\sin }^{2}}\theta \right) \\
& 1+2\sin \theta +{{\sin }^{2}}\theta ={{p}^{2}}-{{p}^{2}}{{\sin }^{2}}\theta -(1) \\
\end{align}\]
Let us put, \[x=\sin \theta \] in equation (1).
\[\begin{align}
& 1+2x+{{x}^{2}}={{p}^{2}}-{{p}^{2}}x \\
& \Rightarrow 1+2x+{{x}^{2}}+p{{x}^{2}}-{{p}^{2}}=0 \\
& {{x}^{2}}\left( {{p}^{2}}+1 \right)+2x+\left( 1-{{p}^{2}} \right)=0-(2) \\
\end{align}\]
The above equation is in the form of a quadratic equation \[a{{x}^{2}}+bx+c=0\]. Let’s compare both the equations and we get, \[a={{p}^{2}}+1\], b = 2, \[c=1-{{p}^{2}}\].
Thus substitute these values in the quadratic formula, \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\].
\[\begin{align}
& x=\dfrac{-1\pm \sqrt{{{2}^{2}}-4\left( {{p}^{2}}+1 \right)\left( 1-{{p}^{2}} \right)}}{2\left( 1+{{p}^{2}} \right)} \\
& x=\dfrac{-2\pm \sqrt{4-4\left( 1+{{p}^{2}} \right)\left( 1-{{p}^{2}} \right)}}{2\left( 1+{{p}^{2}} \right)}=\dfrac{-2\pm 2\sqrt{1-\left( 1+{{p}^{2}} \right)\left( 1-{{p}^{2}} \right)}}{2\left( 1+{{p}^{2}} \right)} \\
\end{align}\]
Cancel out 2 from numerator and denominator.
\[\begin{align}
& x=\dfrac{-1\pm \sqrt{1-\left( {{1}^{2}}-{{\left( {{p}^{2}} \right)}^{2}} \right)}}{\left( 1+{{p}^{2}} \right)}=\dfrac{-1\pm \sqrt{1-\left( 1-{{p}^{4}} \right)}}{\left( 1+{{p}^{2}} \right)} \\
& \because \left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}} \\
\end{align}\]
Similarly, \[\left( 1-{{p}^{2}} \right)\left( 1+{{p}^{2}} \right)=1-{{p}^{4}}\].
\[\therefore x=\dfrac{-1\pm \sqrt{1-1+{{p}^{4}}}}{1+{{p}^{2}}}=\dfrac{-1\pm \sqrt{{{p}^{4}}}}{1+{{p}^{2}}}=\dfrac{-1\pm {{p}^{2}}}{1+{{p}^{2}}}\]
Thus put \[x=\sin \theta \]. We get,
\[\sin \theta =\dfrac{-1\pm {{p}^{2}}}{\left( 1+{{p}^{2}} \right)}\]
Let us first consider, \[\sin \theta =\dfrac{-1+{{p}^{2}}}{\left( 1+{{p}^{2}} \right)}\].
\[\therefore \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}\]
We know, \[\csc =\dfrac{1}{\sin \theta }\].
\[\therefore \csc =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1}\]
Now let us consider the case where, \[\sin \theta =\dfrac{-1-{{p}^{2}}}{1+{{p}^{2}}}\].
\[\begin{align}
& \therefore \sin \theta =\dfrac{-\left( 1+{{p}^{2}} \right)}{\left( 1+{{p}^{2}} \right)} \\
& \therefore \sin \theta =-1 \\
& \csc =\dfrac{1}{\sin \theta }=-1 \\
\end{align}\]
Thus we got the value of \[\csc \theta \].
Note: Here we put, \[x=\sin \theta \], in order to make the simplification easier. If we are directly processing with \[\sin \theta \], then the solution becomes complex. Similarly, we have used basic trigonometric formulas here which you should remember.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

