
If S denotes the sum of infinity and \[{S_n}\] the sum of n terms of the series.
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....,$ such that \[\text{S}-{{\text{S}}_{\text{n}}}<\dfrac{1}{1000},\] then show that least value of n is 11.
Answer
481.5k+ views
Hint:
We know that. Sum of infinite G.P.
$\text{S}=\dfrac{a}{1-\text{r}},$ where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},$ where a = first term of G.P
$r\ \text{=}\ $ common ration
$n\ =\ $ terms of series.
Using given series find the difference of S and \[{S_n}\], then using given inequality show \[n \ge 11\]
Complete step by step solution:
Given series,
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$
Now,
We know that,
Sum of infinite G.P,$\text{S}=\dfrac{a}{1-r}$--------(A)
Where, $a=$ first term of G.P.
$r\ =$ common ratio of finite G.P
Given that from the series.
$a=1$
$r={\scriptstyle\dfrac{1}{2}}$
Now,
$\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}$
$\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}$
$\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.}$ ---------(1)
Now,
We also know that,
Sum of $n$ terms of series, ${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$ -----(B)
Where, $a=$ first term of series
$r\ =\ $ common rat 20.
$n=$ terms of series.
Given that from the series.
$a=1$
$r\ =\ {\scriptstyle{}^{1}/{}_{2,}}$
From equation (B).
${{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}$
$\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2$
$\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2$ $\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)$
$\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2$
\[\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}\]
$\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}$----------(2)
According to question
From equation (1) and (2).
$\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}$
$\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}$
$\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}$
$\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}$
-we know that when $\dfrac{1}{x}<\dfrac{1}{y}$ then, $x>y$
So,
$\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}$
$\Rightarrow {{2}^{n-1}}\ge 1000$
Now
${{2}^{10}}=32\times 32=1024.$
$\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}$
Hence, the least value is 11.
Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if $|r|<1$ then only sequence will be convergent otherwise it’ll be divergent.
We know that. Sum of infinite G.P.
$\text{S}=\dfrac{a}{1-\text{r}},$ where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},$ where a = first term of G.P
$r\ \text{=}\ $ common ration
$n\ =\ $ terms of series.
Using given series find the difference of S and \[{S_n}\], then using given inequality show \[n \ge 11\]
Complete step by step solution:
Given series,
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$
Now,
We know that,
Sum of infinite G.P,$\text{S}=\dfrac{a}{1-r}$--------(A)
Where, $a=$ first term of G.P.
$r\ =$ common ratio of finite G.P
Given that from the series.
$a=1$
$r={\scriptstyle\dfrac{1}{2}}$
Now,
$\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}$
$\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}$
$\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.}$ ---------(1)
Now,
We also know that,
Sum of $n$ terms of series, ${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$ -----(B)
Where, $a=$ first term of series
$r\ =\ $ common rat 20.
$n=$ terms of series.
Given that from the series.
$a=1$
$r\ =\ {\scriptstyle{}^{1}/{}_{2,}}$
From equation (B).
${{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}$
$\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2$
$\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2$ $\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)$
$\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2$
\[\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}\]
$\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}$----------(2)
According to question
From equation (1) and (2).
$\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}$
$\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}$
$\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}$
$\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}$
-we know that when $\dfrac{1}{x}<\dfrac{1}{y}$ then, $x>y$
So,
$\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}$
$\Rightarrow {{2}^{n-1}}\ge 1000$
Now
${{2}^{10}}=32\times 32=1024.$
$\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}$
Hence, the least value is 11.
Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if $|r|<1$ then only sequence will be convergent otherwise it’ll be divergent.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE
