Answer
Verified
429.9k+ views
Hint:
We know that. Sum of infinite G.P.
$\text{S}=\dfrac{a}{1-\text{r}},$ where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},$ where a = first term of G.P
$r\ \text{=}\ $ common ration
$n\ =\ $ terms of series.
Using given series find the difference of S and \[{S_n}\], then using given inequality show \[n \ge 11\]
Complete step by step solution:
Given series,
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$
Now,
We know that,
Sum of infinite G.P,$\text{S}=\dfrac{a}{1-r}$--------(A)
Where, $a=$ first term of G.P.
$r\ =$ common ratio of finite G.P
Given that from the series.
$a=1$
$r={\scriptstyle\dfrac{1}{2}}$
Now,
$\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}$
$\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}$
$\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.}$ ---------(1)
Now,
We also know that,
Sum of $n$ terms of series, ${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$ -----(B)
Where, $a=$ first term of series
$r\ =\ $ common rat 20.
$n=$ terms of series.
Given that from the series.
$a=1$
$r\ =\ {\scriptstyle{}^{1}/{}_{2,}}$
From equation (B).
${{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}$
$\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2$
$\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2$ $\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)$
$\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2$
\[\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}\]
$\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}$----------(2)
According to question
From equation (1) and (2).
$\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}$
$\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}$
$\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}$
$\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}$
-we know that when $\dfrac{1}{x}<\dfrac{1}{y}$ then, $x>y$
So,
$\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}$
$\Rightarrow {{2}^{n-1}}\ge 1000$
Now
${{2}^{10}}=32\times 32=1024.$
$\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}$
Hence, the least value is 11.
Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if $|r|<1$ then only sequence will be convergent otherwise it’ll be divergent.
We know that. Sum of infinite G.P.
$\text{S}=\dfrac{a}{1-\text{r}},$ where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},$ where a = first term of G.P
$r\ \text{=}\ $ common ration
$n\ =\ $ terms of series.
Using given series find the difference of S and \[{S_n}\], then using given inequality show \[n \ge 11\]
Complete step by step solution:
Given series,
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$
Now,
We know that,
Sum of infinite G.P,$\text{S}=\dfrac{a}{1-r}$--------(A)
Where, $a=$ first term of G.P.
$r\ =$ common ratio of finite G.P
Given that from the series.
$a=1$
$r={\scriptstyle\dfrac{1}{2}}$
Now,
$\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}$
$\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}$
$\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.}$ ---------(1)
Now,
We also know that,
Sum of $n$ terms of series, ${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$ -----(B)
Where, $a=$ first term of series
$r\ =\ $ common rat 20.
$n=$ terms of series.
Given that from the series.
$a=1$
$r\ =\ {\scriptstyle{}^{1}/{}_{2,}}$
From equation (B).
${{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}$
$\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2$
$\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2$ $\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)$
$\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2$
\[\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}\]
$\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}$----------(2)
According to question
From equation (1) and (2).
$\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}$
$\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}$
$\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}$
$\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}$
-we know that when $\dfrac{1}{x}<\dfrac{1}{y}$ then, $x>y$
So,
$\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}$
$\Rightarrow {{2}^{n-1}}\ge 1000$
Now
${{2}^{10}}=32\times 32=1024.$
$\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}$
Hence, the least value is 11.
Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if $|r|<1$ then only sequence will be convergent otherwise it’ll be divergent.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell