If S denotes the sum of infinity and \[{S_n}\] the sum of n terms of the series.
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+....,$ such that \[\text{S}-{{\text{S}}_{\text{n}}}<\dfrac{1}{1000},\] then show that least value of n is 11.
Answer
Verified
469.5k+ views
Hint:
We know that. Sum of infinite G.P.
$\text{S}=\dfrac{a}{1-\text{r}},$ where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},$ where a = first term of G.P
$r\ \text{=}\ $ common ration
$n\ =\ $ terms of series.
Using given series find the difference of S and \[{S_n}\], then using given inequality show \[n \ge 11\]
Complete step by step solution:
Given series,
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$
Now,
We know that,
Sum of infinite G.P,$\text{S}=\dfrac{a}{1-r}$--------(A)
Where, $a=$ first term of G.P.
$r\ =$ common ratio of finite G.P
Given that from the series.
$a=1$
$r={\scriptstyle\dfrac{1}{2}}$
Now,
$\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}$
$\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}$
$\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.}$ ---------(1)
Now,
We also know that,
Sum of $n$ terms of series, ${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$ -----(B)
Where, $a=$ first term of series
$r\ =\ $ common rat 20.
$n=$ terms of series.
Given that from the series.
$a=1$
$r\ =\ {\scriptstyle{}^{1}/{}_{2,}}$
From equation (B).
${{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}$
$\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2$
$\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2$ $\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)$
$\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2$
\[\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}\]
$\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}$----------(2)
According to question
From equation (1) and (2).
$\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}$
$\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}$
$\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}$
$\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}$
-we know that when $\dfrac{1}{x}<\dfrac{1}{y}$ then, $x>y$
So,
$\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}$
$\Rightarrow {{2}^{n-1}}\ge 1000$
Now
${{2}^{10}}=32\times 32=1024.$
$\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}$
Hence, the least value is 11.
Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if $|r|<1$ then only sequence will be convergent otherwise it’ll be divergent.
We know that. Sum of infinite G.P.
$\text{S}=\dfrac{a}{1-\text{r}},$ where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r},$ where a = first term of G.P
$r\ \text{=}\ $ common ration
$n\ =\ $ terms of series.
Using given series find the difference of S and \[{S_n}\], then using given inequality show \[n \ge 11\]
Complete step by step solution:
Given series,
$1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......$
Now,
We know that,
Sum of infinite G.P,$\text{S}=\dfrac{a}{1-r}$--------(A)
Where, $a=$ first term of G.P.
$r\ =$ common ratio of finite G.P
Given that from the series.
$a=1$
$r={\scriptstyle\dfrac{1}{2}}$
Now,
$\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}$
$\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}$
$\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.}$ ---------(1)
Now,
We also know that,
Sum of $n$ terms of series, ${{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$ -----(B)
Where, $a=$ first term of series
$r\ =\ $ common rat 20.
$n=$ terms of series.
Given that from the series.
$a=1$
$r\ =\ {\scriptstyle{}^{1}/{}_{2,}}$
From equation (B).
${{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}$
$\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}$
$\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2$
$\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2$ $\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)$
$\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2$
\[\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}\]
$\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}$----------(2)
According to question
From equation (1) and (2).
$\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}$
$\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}$
$\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}$
$\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}$
-we know that when $\dfrac{1}{x}<\dfrac{1}{y}$ then, $x>y$
So,
$\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}$
$\Rightarrow {{2}^{n-1}}\ge 1000$
Now
${{2}^{10}}=32\times 32=1024.$
$\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}$
Hence, the least value is 11.
Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if $|r|<1$ then only sequence will be convergent otherwise it’ll be divergent.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE