
If ${\rm{\omega }} \ne 1$ is a cube root of unity, and ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$. Then (A, B) equals.
A) (0, 1)
B) (1, 1)
C) (1, 0)
D) (-1, 1)
Answer
553.8k+ views
Hint:
Conditions for w to be cube root of unity are: ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$. Using these conditions, form two equations and solve for values of A and B.
Complete step by step solution:
Since w is the cube root of unity,
${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ (i)
Given, ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$ $\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]$
$ \Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$ [Equation (i)]
$ \Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }}$ [Equation (ii)]
So, A = 1 and B =1
So, option (B) is correct.
Note:
Conditions of cube root of unity ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ are necessary to solve this type of questions. Substitute the values using the conditions to form equations.
Conditions for w to be cube root of unity are: ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$. Using these conditions, form two equations and solve for values of A and B.
Complete step by step solution:
Since w is the cube root of unity,
${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ (i)
Given, ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$ $\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]$
$ \Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$ [Equation (i)]
$ \Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }}$ [Equation (ii)]
So, A = 1 and B =1
So, option (B) is correct.
Note:
Conditions of cube root of unity ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ are necessary to solve this type of questions. Substitute the values using the conditions to form equations.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

