
If ${\rm{\omega }} \ne 1$ is a cube root of unity, and ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$. Then (A, B) equals.
A) (0, 1)
B) (1, 1)
C) (1, 0)
D) (-1, 1)
Answer
570.6k+ views
Hint:
Conditions for w to be cube root of unity are: ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$. Using these conditions, form two equations and solve for values of A and B.
Complete step by step solution:
Since w is the cube root of unity,
${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ (i)
Given, ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$ $\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]$
$ \Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$ [Equation (i)]
$ \Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }}$ [Equation (ii)]
So, A = 1 and B =1
So, option (B) is correct.
Note:
Conditions of cube root of unity ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ are necessary to solve this type of questions. Substitute the values using the conditions to form equations.
Conditions for w to be cube root of unity are: ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$. Using these conditions, form two equations and solve for values of A and B.
Complete step by step solution:
Since w is the cube root of unity,
${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ (i)
Given, ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$ $\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]$
$ \Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$ [Equation (i)]
$ \Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }}$ [Equation (ii)]
So, A = 1 and B =1
So, option (B) is correct.
Note:
Conditions of cube root of unity ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ are necessary to solve this type of questions. Substitute the values using the conditions to form equations.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

