
If ${\rm{\omega }} \ne 1$ is a cube root of unity, and ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$. Then (A, B) equals.
A) (0, 1)
B) (1, 1)
C) (1, 0)
D) (-1, 1)
Answer
484.8k+ views
Hint:
Conditions for w to be cube root of unity are: ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$. Using these conditions, form two equations and solve for values of A and B.
Complete step by step solution:
Since w is the cube root of unity,
${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ (i)
Given, ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$ $\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]$
$ \Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$ [Equation (i)]
$ \Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }}$ [Equation (ii)]
So, A = 1 and B =1
So, option (B) is correct.
Note:
Conditions of cube root of unity ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ are necessary to solve this type of questions. Substitute the values using the conditions to form equations.
Conditions for w to be cube root of unity are: ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$. Using these conditions, form two equations and solve for values of A and B.
Complete step by step solution:
Since w is the cube root of unity,
${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ (i)
Given, ${\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }}$ $\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]$
$ \Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$ [Equation (i)]
$ \Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}$
$ \Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }}$ [Equation (ii)]
So, A = 1 and B =1
So, option (B) is correct.
Note:
Conditions of cube root of unity ${{\rm{\omega }}^3} = 1$ and $1 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0$ are necessary to solve this type of questions. Substitute the values using the conditions to form equations.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE
