
If ${{p}^{th}},{{q}^{th}},{{r}^{th}}$ and ${{s}^{th}}$ terms of an A.P are in G.P, then prove that p-q, q-r and r-s are also in G.P.
Answer
573.9k+ views
Hint: Assume that the first term of the A.P is “a” and the common difference is “d”. Use the fact that ${{n}^{th}}$term of an A.P is given by ${{a}_{n}}=a+\left( n-1 \right)d$. Use the fact that if a, b, c and d are in G.P, then $\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$. Hence prove that p-q, q-r and r-s are in G.P
Complete step-by-step answer:
Let the first term of the A.P be “a” and let the common difference of the A.P be “d”.
We know that the ${{n}^{th}}$ term of the A.P is given by ${{a}_{n}}=a+\left( n-1 \right)d$.
Hence, we have
$\begin{align}
& {{a}_{p}}=a+\left( p-1 \right)d \\
& {{a}_{q}}=a+\left( q-1 \right)d \\
& {{a}_{r}}=a+\left( r-1 \right)d \\
& {{a}_{s}}=a+\left( s-1 \right)d \\
\end{align}$
Since the ${{p}^{th}},{{q}^{th}},{{r}^{th}}$ and ${{s}^{th}}$ term of the A.P are in G.P, we have
$\dfrac{{{a}_{q}}}{{{a}_{p}}}=\dfrac{{{a}_{r}}}{{{a}_{q}}}=\dfrac{{{a}_{s}}}{{{a}_{r}}}$
From the first equality, we have
$\dfrac{{{a}_{q}}}{{{a}_{p}}}=\dfrac{{{a}_{r}}}{{{a}_{q}}}$
Substituting the value of ${{a}_{p}},{{a}_{q}}$ and ${{a}_{r}}$, we get
$\dfrac{a+\left( q-1 \right)d}{a+\left( p-1 \right)d}=\dfrac{a+\left( r-1 \right)d}{a+\left( q-1 \right)d}$
We know that if $\dfrac{a}{b}=\dfrac{c}{d}$, then $\dfrac{a-b}{b}=\dfrac{c-d}{d}$
Hence, we have
$\begin{align}
& \dfrac{a+\left( q-1 \right)d-\left( a+\left( p-1 \right)d \right)}{a+\left( p-1 \right)d}=\dfrac{a+\left( r-1 \right)d-\left( a+\left( q-1 \right)d \right)}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{\left( q-p \right)d}{a+\left( p-1 \right)d}=\dfrac{\left( r-q \right)d}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{q-p}{a+\left( p-1 \right)d}=\dfrac{r-q}{a+\left( q-1 \right)d} \\
\end{align}$
Multiplying both sides by $\dfrac{a+\left( p-1 \right)d}{r-q}$, we get
$\begin{align}
& \dfrac{q-p}{r-q}=\dfrac{a+\left( p-1 \right)d}{a+\left( q-1 \right)d}=\dfrac{{{a}_{p}}}{{{a}_{q}}} \\
& \Rightarrow \dfrac{q-p}{r-q}=\dfrac{{{a}_{p}}}{{{a}_{q}}}\ \ \ \ \left( i \right) \\
\end{align}$
From second equality, we have
$\dfrac{{{a}_{s}}}{{{a}_{r}}}=\dfrac{{{a}_{r}}}{{{a}_{q}}}$
Substituting the value of ${{a}_{r}},{{a}_{q}}$ and ${{a}_{s}}$, we get
$\dfrac{a+\left( s-1 \right)d}{a+\left( r-1 \right)d}=\dfrac{a+\left( r-1 \right)d}{a+\left( q-1 \right)d}$
We know that if $\dfrac{a}{b}=\dfrac{c}{d}$, then $\dfrac{a-b}{b}=\dfrac{c-d}{d}$
Hence, we have
$\begin{align}
& \dfrac{a+\left( s-1 \right)d-\left( a+\left( r-1 \right)d \right)}{a+\left( r-1 \right)d}=\dfrac{a+\left( r-1 \right)d-\left( a+\left( q-1 \right)d \right)}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{\left( s-r \right)d}{a+\left( r-1 \right)d}=\dfrac{\left( r-q \right)d}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{s-r}{a+\left( r-1 \right)d}=\dfrac{r-q}{a+\left( q-1 \right)d} \\
\end{align}$
Multiplying both sides by $\dfrac{a+\left( r-1 \right)d}{r-q}$, we get
$\dfrac{s-r}{r-q}=\dfrac{a+\left( r-1 \right)d}{a+\left( q-1 \right)d}=\dfrac{{{a}_{r}}}{{{a}_{q}}}$
We know that $\dfrac{{{a}_{r}}}{{{a}_{q}}}=\dfrac{{{a}_{q}}}{{{a}_{p}}}$
Hence, we have
$\dfrac{s-r}{r-q}=\dfrac{{{a}_{q}}}{{{a}_{p}}}\ \ \ \ \left( ii \right)$
Multiplying equation (i) and equation (ii), we get
$\begin{align}
& \dfrac{q-p}{r-q}\times \dfrac{s-r}{r-q}=\dfrac{{{a}_{q}}}{{{a}_{p}}}\times \dfrac{{{a}_{q}}}{{{a}_{p}}}=1 \\
& \Rightarrow \left( q-p \right)\left( s-r \right)={{\left( r-q \right)}^{2}} \\
& \Rightarrow \left( p-q \right)\left( r-s \right)={{\left( q-r \right)}^{2}} \\
\end{align}$
Hence, we have p-q, q-r and r-s are in G.P
Q.E.D
Note: [1] A common mistake done by students in these types of questions is that they cross multiply the expressions and then simplify which makes the calculations difficult and prone to mistakes. A better strategy in these types of questions is make use of the properties of proportions and simplify as done above.
Complete step-by-step answer:
Let the first term of the A.P be “a” and let the common difference of the A.P be “d”.
We know that the ${{n}^{th}}$ term of the A.P is given by ${{a}_{n}}=a+\left( n-1 \right)d$.
Hence, we have
$\begin{align}
& {{a}_{p}}=a+\left( p-1 \right)d \\
& {{a}_{q}}=a+\left( q-1 \right)d \\
& {{a}_{r}}=a+\left( r-1 \right)d \\
& {{a}_{s}}=a+\left( s-1 \right)d \\
\end{align}$
Since the ${{p}^{th}},{{q}^{th}},{{r}^{th}}$ and ${{s}^{th}}$ term of the A.P are in G.P, we have
$\dfrac{{{a}_{q}}}{{{a}_{p}}}=\dfrac{{{a}_{r}}}{{{a}_{q}}}=\dfrac{{{a}_{s}}}{{{a}_{r}}}$
From the first equality, we have
$\dfrac{{{a}_{q}}}{{{a}_{p}}}=\dfrac{{{a}_{r}}}{{{a}_{q}}}$
Substituting the value of ${{a}_{p}},{{a}_{q}}$ and ${{a}_{r}}$, we get
$\dfrac{a+\left( q-1 \right)d}{a+\left( p-1 \right)d}=\dfrac{a+\left( r-1 \right)d}{a+\left( q-1 \right)d}$
We know that if $\dfrac{a}{b}=\dfrac{c}{d}$, then $\dfrac{a-b}{b}=\dfrac{c-d}{d}$
Hence, we have
$\begin{align}
& \dfrac{a+\left( q-1 \right)d-\left( a+\left( p-1 \right)d \right)}{a+\left( p-1 \right)d}=\dfrac{a+\left( r-1 \right)d-\left( a+\left( q-1 \right)d \right)}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{\left( q-p \right)d}{a+\left( p-1 \right)d}=\dfrac{\left( r-q \right)d}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{q-p}{a+\left( p-1 \right)d}=\dfrac{r-q}{a+\left( q-1 \right)d} \\
\end{align}$
Multiplying both sides by $\dfrac{a+\left( p-1 \right)d}{r-q}$, we get
$\begin{align}
& \dfrac{q-p}{r-q}=\dfrac{a+\left( p-1 \right)d}{a+\left( q-1 \right)d}=\dfrac{{{a}_{p}}}{{{a}_{q}}} \\
& \Rightarrow \dfrac{q-p}{r-q}=\dfrac{{{a}_{p}}}{{{a}_{q}}}\ \ \ \ \left( i \right) \\
\end{align}$
From second equality, we have
$\dfrac{{{a}_{s}}}{{{a}_{r}}}=\dfrac{{{a}_{r}}}{{{a}_{q}}}$
Substituting the value of ${{a}_{r}},{{a}_{q}}$ and ${{a}_{s}}$, we get
$\dfrac{a+\left( s-1 \right)d}{a+\left( r-1 \right)d}=\dfrac{a+\left( r-1 \right)d}{a+\left( q-1 \right)d}$
We know that if $\dfrac{a}{b}=\dfrac{c}{d}$, then $\dfrac{a-b}{b}=\dfrac{c-d}{d}$
Hence, we have
$\begin{align}
& \dfrac{a+\left( s-1 \right)d-\left( a+\left( r-1 \right)d \right)}{a+\left( r-1 \right)d}=\dfrac{a+\left( r-1 \right)d-\left( a+\left( q-1 \right)d \right)}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{\left( s-r \right)d}{a+\left( r-1 \right)d}=\dfrac{\left( r-q \right)d}{a+\left( q-1 \right)d} \\
& \Rightarrow \dfrac{s-r}{a+\left( r-1 \right)d}=\dfrac{r-q}{a+\left( q-1 \right)d} \\
\end{align}$
Multiplying both sides by $\dfrac{a+\left( r-1 \right)d}{r-q}$, we get
$\dfrac{s-r}{r-q}=\dfrac{a+\left( r-1 \right)d}{a+\left( q-1 \right)d}=\dfrac{{{a}_{r}}}{{{a}_{q}}}$
We know that $\dfrac{{{a}_{r}}}{{{a}_{q}}}=\dfrac{{{a}_{q}}}{{{a}_{p}}}$
Hence, we have
$\dfrac{s-r}{r-q}=\dfrac{{{a}_{q}}}{{{a}_{p}}}\ \ \ \ \left( ii \right)$
Multiplying equation (i) and equation (ii), we get
$\begin{align}
& \dfrac{q-p}{r-q}\times \dfrac{s-r}{r-q}=\dfrac{{{a}_{q}}}{{{a}_{p}}}\times \dfrac{{{a}_{q}}}{{{a}_{p}}}=1 \\
& \Rightarrow \left( q-p \right)\left( s-r \right)={{\left( r-q \right)}^{2}} \\
& \Rightarrow \left( p-q \right)\left( r-s \right)={{\left( q-r \right)}^{2}} \\
\end{align}$
Hence, we have p-q, q-r and r-s are in G.P
Q.E.D
Note: [1] A common mistake done by students in these types of questions is that they cross multiply the expressions and then simplify which makes the calculations difficult and prone to mistakes. A better strategy in these types of questions is make use of the properties of proportions and simplify as done above.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

