
If PQ is a double ordinate of the hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola, then the eccentricity e of the hyperbola satisfies,
A. $1 < e < \dfrac{2}{\sqrt{3}}$
B. $e=\dfrac{2}{\sqrt{3}}$
C. $e=\dfrac{\sqrt{3}}{2}$
D. $e > \dfrac{2}{\sqrt{3}}$
Answer
510.3k+ views
- Hint: We will be using the concept of hyperbola to solve the problem. We will first use the parametric form of a point on hyperbola to find a general point on hyperbola then we will use the given condition that the triangle is equilateral to find a relation between a and b and then we will be using the concept of eccentricity double ordinate to further simplify the problem.
Complete step-by-step solution -
We have been given a hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and that PQ is a double ordinate such that OPQ is an equilateral triangle.
Now, we have been given that $\Delta OPQ$ is an equilateral triangle therefore, the $\angle POQ=60{}^\circ $.
Now, since PQ is a double ordinate therefore the $\angle POM\ and\ \angle MOQ$ are equal due to symmetry. So, we have,
$\angle POM=\angle MOQ=\dfrac{60}{2}=30{}^\circ $
Now, we take the coordinate of P in parametric form as $\left( a\sec \theta ,b\tan \theta \right)$. Also, the coordinate of O origin is (0, 0).
Therefore, the slope OP is,
$\dfrac{b\tan \theta -0}{a\sec \theta -0}$
From the formula $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m$.
Also, the slope is equal to tan 30 as we have been shown above. Therefore,
$\begin{align}
& \dfrac{b\tan \theta }{a\sec \theta }=\tan 30{}^\circ \\
& \dfrac{b\tan \theta }{a\sec \theta }=\dfrac{1}{\sqrt{3}} \\
\end{align}$
Now, we will use the identities,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \dfrac{b}{a}\dfrac{\sin \theta }{\cos \theta }\times \cos \theta =\dfrac{1}{\sqrt{3}} \\
& \sin \theta =\dfrac{a}{b}\times \dfrac{1}{\sqrt{3}} \\
& \Rightarrow \text{cosec}\ \theta \ =\dfrac{b\sqrt{3}}{a} \\
\end{align}$
Now, we will square both sides to simplify it,
$\text{cose}{{\text{c}}^{2}}\theta =\dfrac{3{{b}^{2}}}{{{a}^{2}}}...........\left( 1 \right)$
Now, we know that the eccentricity of hyperbola is given by,
$\begin{align}
& {{b}^{2}}={{a}^{2}}\left( {{e}^{2}}-1 \right) \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}={{e}^{2}}-1 \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}+1={{e}^{2}} \\
\end{align}$
We will substitute the value of $\dfrac{{{b}^{2}}}{{{a}^{2}}}$ from (1),
$\begin{align}
& \dfrac{\text{cose}{{\text{c}}^{2}}\theta }{3}+1={{e}^{2}} \\
& =\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)..........\left( 2 \right) \\
\end{align}$
Now, we know that the range of $\text{cosec}\theta $ is $\left( -\infty ,\left. -1 \right] \right.\cup \left[ \left. 1,\infty \right) \right.$.
So, the range of $\text{cose}{{\text{c}}^{2}}\theta $ is $\text{cose}{{\text{c}}^{2}}\theta \ge 1$.
Now, we will use this in (2), where $\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)$.
$\begin{align}
& \Rightarrow 3\left( {{e}^{2}}-1 \right)\ge 1 \\
& {{e}^{2}}-1\ge \dfrac{1}{3} \\
& {{e}^{2}}\ge \dfrac{1}{3}+1 \\
& {{e}^{2}}\ge \dfrac{4}{3} \\
& {{e}^{2}}>\sqrt{\dfrac{4}{3}} \\
& e>\pm \dfrac{2}{\sqrt{3}} \\
\end{align}$
We will ignore the negative inequality since e > 1 for hyperbola. Therefore,
$e > \dfrac{2}{\sqrt{3}}$ is the answer.
Hence, option (D) is correct.
Note: To solve these types of questions one must have a basic understanding of the concepts of hyperbola like double ordinate also it is important to note how we have used the condition of equilateral triangle to solve the problem.
Complete step-by-step solution -
We have been given a hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and that PQ is a double ordinate such that OPQ is an equilateral triangle.

Now, we have been given that $\Delta OPQ$ is an equilateral triangle therefore, the $\angle POQ=60{}^\circ $.
Now, since PQ is a double ordinate therefore the $\angle POM\ and\ \angle MOQ$ are equal due to symmetry. So, we have,
$\angle POM=\angle MOQ=\dfrac{60}{2}=30{}^\circ $
Now, we take the coordinate of P in parametric form as $\left( a\sec \theta ,b\tan \theta \right)$. Also, the coordinate of O origin is (0, 0).
Therefore, the slope OP is,
$\dfrac{b\tan \theta -0}{a\sec \theta -0}$
From the formula $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m$.
Also, the slope is equal to tan 30 as we have been shown above. Therefore,
$\begin{align}
& \dfrac{b\tan \theta }{a\sec \theta }=\tan 30{}^\circ \\
& \dfrac{b\tan \theta }{a\sec \theta }=\dfrac{1}{\sqrt{3}} \\
\end{align}$
Now, we will use the identities,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \dfrac{b}{a}\dfrac{\sin \theta }{\cos \theta }\times \cos \theta =\dfrac{1}{\sqrt{3}} \\
& \sin \theta =\dfrac{a}{b}\times \dfrac{1}{\sqrt{3}} \\
& \Rightarrow \text{cosec}\ \theta \ =\dfrac{b\sqrt{3}}{a} \\
\end{align}$
Now, we will square both sides to simplify it,
$\text{cose}{{\text{c}}^{2}}\theta =\dfrac{3{{b}^{2}}}{{{a}^{2}}}...........\left( 1 \right)$
Now, we know that the eccentricity of hyperbola is given by,
$\begin{align}
& {{b}^{2}}={{a}^{2}}\left( {{e}^{2}}-1 \right) \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}={{e}^{2}}-1 \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}+1={{e}^{2}} \\
\end{align}$
We will substitute the value of $\dfrac{{{b}^{2}}}{{{a}^{2}}}$ from (1),
$\begin{align}
& \dfrac{\text{cose}{{\text{c}}^{2}}\theta }{3}+1={{e}^{2}} \\
& =\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)..........\left( 2 \right) \\
\end{align}$
Now, we know that the range of $\text{cosec}\theta $ is $\left( -\infty ,\left. -1 \right] \right.\cup \left[ \left. 1,\infty \right) \right.$.
So, the range of $\text{cose}{{\text{c}}^{2}}\theta $ is $\text{cose}{{\text{c}}^{2}}\theta \ge 1$.
Now, we will use this in (2), where $\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)$.
$\begin{align}
& \Rightarrow 3\left( {{e}^{2}}-1 \right)\ge 1 \\
& {{e}^{2}}-1\ge \dfrac{1}{3} \\
& {{e}^{2}}\ge \dfrac{1}{3}+1 \\
& {{e}^{2}}\ge \dfrac{4}{3} \\
& {{e}^{2}}>\sqrt{\dfrac{4}{3}} \\
& e>\pm \dfrac{2}{\sqrt{3}} \\
\end{align}$
We will ignore the negative inequality since e > 1 for hyperbola. Therefore,
$e > \dfrac{2}{\sqrt{3}}$ is the answer.
Hence, option (D) is correct.
Note: To solve these types of questions one must have a basic understanding of the concepts of hyperbola like double ordinate also it is important to note how we have used the condition of equilateral triangle to solve the problem.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
