
If PQ is a double ordinate of the hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ such that OPQ is an equilateral triangle, O being the centre of the hyperbola, then the eccentricity e of the hyperbola satisfies,
A. $1 < e < \dfrac{2}{\sqrt{3}}$
B. $e=\dfrac{2}{\sqrt{3}}$
C. $e=\dfrac{\sqrt{3}}{2}$
D. $e > \dfrac{2}{\sqrt{3}}$
Answer
594k+ views
- Hint: We will be using the concept of hyperbola to solve the problem. We will first use the parametric form of a point on hyperbola to find a general point on hyperbola then we will use the given condition that the triangle is equilateral to find a relation between a and b and then we will be using the concept of eccentricity double ordinate to further simplify the problem.
Complete step-by-step solution -
We have been given a hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and that PQ is a double ordinate such that OPQ is an equilateral triangle.
Now, we have been given that $\Delta OPQ$ is an equilateral triangle therefore, the $\angle POQ=60{}^\circ $.
Now, since PQ is a double ordinate therefore the $\angle POM\ and\ \angle MOQ$ are equal due to symmetry. So, we have,
$\angle POM=\angle MOQ=\dfrac{60}{2}=30{}^\circ $
Now, we take the coordinate of P in parametric form as $\left( a\sec \theta ,b\tan \theta \right)$. Also, the coordinate of O origin is (0, 0).
Therefore, the slope OP is,
$\dfrac{b\tan \theta -0}{a\sec \theta -0}$
From the formula $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m$.
Also, the slope is equal to tan 30 as we have been shown above. Therefore,
$\begin{align}
& \dfrac{b\tan \theta }{a\sec \theta }=\tan 30{}^\circ \\
& \dfrac{b\tan \theta }{a\sec \theta }=\dfrac{1}{\sqrt{3}} \\
\end{align}$
Now, we will use the identities,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \dfrac{b}{a}\dfrac{\sin \theta }{\cos \theta }\times \cos \theta =\dfrac{1}{\sqrt{3}} \\
& \sin \theta =\dfrac{a}{b}\times \dfrac{1}{\sqrt{3}} \\
& \Rightarrow \text{cosec}\ \theta \ =\dfrac{b\sqrt{3}}{a} \\
\end{align}$
Now, we will square both sides to simplify it,
$\text{cose}{{\text{c}}^{2}}\theta =\dfrac{3{{b}^{2}}}{{{a}^{2}}}...........\left( 1 \right)$
Now, we know that the eccentricity of hyperbola is given by,
$\begin{align}
& {{b}^{2}}={{a}^{2}}\left( {{e}^{2}}-1 \right) \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}={{e}^{2}}-1 \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}+1={{e}^{2}} \\
\end{align}$
We will substitute the value of $\dfrac{{{b}^{2}}}{{{a}^{2}}}$ from (1),
$\begin{align}
& \dfrac{\text{cose}{{\text{c}}^{2}}\theta }{3}+1={{e}^{2}} \\
& =\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)..........\left( 2 \right) \\
\end{align}$
Now, we know that the range of $\text{cosec}\theta $ is $\left( -\infty ,\left. -1 \right] \right.\cup \left[ \left. 1,\infty \right) \right.$.
So, the range of $\text{cose}{{\text{c}}^{2}}\theta $ is $\text{cose}{{\text{c}}^{2}}\theta \ge 1$.
Now, we will use this in (2), where $\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)$.
$\begin{align}
& \Rightarrow 3\left( {{e}^{2}}-1 \right)\ge 1 \\
& {{e}^{2}}-1\ge \dfrac{1}{3} \\
& {{e}^{2}}\ge \dfrac{1}{3}+1 \\
& {{e}^{2}}\ge \dfrac{4}{3} \\
& {{e}^{2}}>\sqrt{\dfrac{4}{3}} \\
& e>\pm \dfrac{2}{\sqrt{3}} \\
\end{align}$
We will ignore the negative inequality since e > 1 for hyperbola. Therefore,
$e > \dfrac{2}{\sqrt{3}}$ is the answer.
Hence, option (D) is correct.
Note: To solve these types of questions one must have a basic understanding of the concepts of hyperbola like double ordinate also it is important to note how we have used the condition of equilateral triangle to solve the problem.
Complete step-by-step solution -
We have been given a hyperbola $\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ and that PQ is a double ordinate such that OPQ is an equilateral triangle.
Now, we have been given that $\Delta OPQ$ is an equilateral triangle therefore, the $\angle POQ=60{}^\circ $.
Now, since PQ is a double ordinate therefore the $\angle POM\ and\ \angle MOQ$ are equal due to symmetry. So, we have,
$\angle POM=\angle MOQ=\dfrac{60}{2}=30{}^\circ $
Now, we take the coordinate of P in parametric form as $\left( a\sec \theta ,b\tan \theta \right)$. Also, the coordinate of O origin is (0, 0).
Therefore, the slope OP is,
$\dfrac{b\tan \theta -0}{a\sec \theta -0}$
From the formula $\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=m$.
Also, the slope is equal to tan 30 as we have been shown above. Therefore,
$\begin{align}
& \dfrac{b\tan \theta }{a\sec \theta }=\tan 30{}^\circ \\
& \dfrac{b\tan \theta }{a\sec \theta }=\dfrac{1}{\sqrt{3}} \\
\end{align}$
Now, we will use the identities,
$\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
& \dfrac{b}{a}\dfrac{\sin \theta }{\cos \theta }\times \cos \theta =\dfrac{1}{\sqrt{3}} \\
& \sin \theta =\dfrac{a}{b}\times \dfrac{1}{\sqrt{3}} \\
& \Rightarrow \text{cosec}\ \theta \ =\dfrac{b\sqrt{3}}{a} \\
\end{align}$
Now, we will square both sides to simplify it,
$\text{cose}{{\text{c}}^{2}}\theta =\dfrac{3{{b}^{2}}}{{{a}^{2}}}...........\left( 1 \right)$
Now, we know that the eccentricity of hyperbola is given by,
$\begin{align}
& {{b}^{2}}={{a}^{2}}\left( {{e}^{2}}-1 \right) \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}={{e}^{2}}-1 \\
& \dfrac{{{b}^{2}}}{{{a}^{2}}}+1={{e}^{2}} \\
\end{align}$
We will substitute the value of $\dfrac{{{b}^{2}}}{{{a}^{2}}}$ from (1),
$\begin{align}
& \dfrac{\text{cose}{{\text{c}}^{2}}\theta }{3}+1={{e}^{2}} \\
& =\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)..........\left( 2 \right) \\
\end{align}$
Now, we know that the range of $\text{cosec}\theta $ is $\left( -\infty ,\left. -1 \right] \right.\cup \left[ \left. 1,\infty \right) \right.$.
So, the range of $\text{cose}{{\text{c}}^{2}}\theta $ is $\text{cose}{{\text{c}}^{2}}\theta \ge 1$.
Now, we will use this in (2), where $\text{cose}{{\text{c}}^{2}}\theta =3\left( {{e}^{2}}-1 \right)$.
$\begin{align}
& \Rightarrow 3\left( {{e}^{2}}-1 \right)\ge 1 \\
& {{e}^{2}}-1\ge \dfrac{1}{3} \\
& {{e}^{2}}\ge \dfrac{1}{3}+1 \\
& {{e}^{2}}\ge \dfrac{4}{3} \\
& {{e}^{2}}>\sqrt{\dfrac{4}{3}} \\
& e>\pm \dfrac{2}{\sqrt{3}} \\
\end{align}$
We will ignore the negative inequality since e > 1 for hyperbola. Therefore,
$e > \dfrac{2}{\sqrt{3}}$ is the answer.
Hence, option (D) is correct.
Note: To solve these types of questions one must have a basic understanding of the concepts of hyperbola like double ordinate also it is important to note how we have used the condition of equilateral triangle to solve the problem.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

