# If \[{p^3} - q\left( {3p - 1} \right) + {q^2} = 0\], find the relation between the roots of the equation \[{x^2} + px + q = 0\].

Answer

Verified

93.9k+ views

**Hint:**We will assume the roots of the equation \[{x^2} + px + q = 0\] to be \[\alpha \] and \[\beta \]. As we know, standard form of an quadratic equation is \[a{x^2} + bx + c\], where \[a\], \[b\] and \[c\] are the coefficients and the quadratic equation in term of roots is given by: \[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]. Using this we will find the value of sum of the roots and product of the roots in terms of \[p\] and \[q\]. Then we will substitute this in the given equation \[{p^3} - q\left( {3p - 1} \right) + {q^2} = 0\] to find the relation between the roots of the equation \[{x^2} + px + q = 0\].

**Complete step-by-step answer:**

Let \[\alpha \] and \[\beta \] are the roots of the equation \[{x^2} + px + q = 0\].

As we know, standard form of an quadratic equation is \[a{x^2} + bx + c\], where \[a\], \[b\] and \[c\] are the coefficients and the quadratic equation in term of roots is given by: \[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\].

Using this, we get

\[ \Rightarrow \alpha + \beta = - p\] and \[\alpha \beta = q\]

Given, \[{p^3} - q\left( {3p - 1} \right) + {q^2} = 0\].

Putting the values of \[p\] and \[q\] in the above equation, we get

\[ \Rightarrow {\left( { - \left( {\alpha + \beta } \right)} \right)^3} - \alpha \beta \left( { - 3\left( {\alpha + \beta } \right) - 1} \right) + {\left( {\alpha \beta } \right)^2} = 0\]

On simplifying, we get

\[ \Rightarrow - \left( {{\alpha ^3} + 3{\alpha ^2}\beta + 3\alpha {\beta ^2} + {\beta ^3}} \right) - \alpha \beta \left( { - 3\alpha - 3\beta - 1} \right) + {\alpha ^2}{\beta ^2} = 0\]

On further simplification, we get

\[ \Rightarrow - {\alpha ^3} - 3{\alpha ^2}\beta - 3\alpha {\beta ^2} - {\beta ^3} + 3{\alpha ^2}\beta + 3\alpha {\beta ^2} + \alpha \beta + {\alpha ^2}{\beta ^2} = 0\]

\[ \Rightarrow - {\alpha ^3} - {\beta ^3} + \alpha \beta + {\alpha ^2}{\beta ^2} = 0\]

On rewriting, we get

\[ \Rightarrow \alpha \beta + {\alpha ^2}{\beta ^2} = {\alpha ^3} + {\beta ^3}\]

Taking common from the left-hand side of the above equation, we get

\[ \Rightarrow \alpha \beta \left( {\alpha \beta + 1} \right) = {\alpha ^3} + {\beta ^3}\]

Therefore, the relation between the roots of the equation \[{x^2} + px + q = 0\], given \[{p^3} - q\left( {3p - 1} \right) + {q^2} = 0\] is \[\alpha \beta \left( {\alpha \beta + 1} \right) = {\alpha ^3} + {\beta ^3}\].

**Note:**\[{x^2} + px + q = 0\] is a quadratic equation. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE