
If p and q are the roots of the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha =1\], then the minimum value of $\left( {{p}^{2}}+{{q}^{2}} \right)$ is equal to:
(a) 2
(b) 3
(c) 5
(d) 6
Answer
510.6k+ views
Hint: We start solving the problem by writing the given quadratic equation into the standard form $a{{x}^{2}}+bx+c=0$. We use the fact that sum and product of the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ is $\dfrac{-b}{a}$ and $\dfrac{c}{a}$ to find the sum and product of roots of \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha =1\]. We then square the obtained sum of the roots and substitute the value of the product of roots obtained in it. We then use the fact that the minimum value of any square is 0 and make subsequent calculations to find the required value.
Complete step-by-step answer:
According to the problem, we have a quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha =1\] which has roots p and q. We need to find the minimum value of $\left( {{p}^{2}}+{{q}^{2}} \right)$.
Let us convert the given quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha =1\] into the standard form $a{{x}^{2}}+bx+c=0$.
So, we have the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha -1=0\] ---(1).
We know that sum and product of the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ is $\dfrac{-b}{a}$ and $\dfrac{c}{a}$. We use this results in equation (1).
So, the sum of roots of the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha -1=0\] is $p+q=\dfrac{-\left( -\left( \alpha -2 \right) \right)}{1}$.
$\Rightarrow p+q=\alpha -2$ ---(2).
So, the product of roots of the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha -1=0\] is $pq=\dfrac{-\alpha -1}{1}$.
$\Rightarrow pq=-\alpha -1$ ---(3).
Let us square on both sides in equation (2).
\[\Rightarrow {{\left( p+q \right)}^{2}}={{\left( \alpha -2 \right)}^{2}}\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}+2pq={{\alpha }^{2}}-4\alpha +4\].
From equation (3) we get,
\[\Rightarrow {{p}^{2}}+{{q}^{2}}+2\left( -\alpha -1 \right)={{\alpha }^{2}}-4\alpha +4\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}-2\alpha -2={{\alpha }^{2}}-4\alpha +4\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\alpha }^{2}}-4\alpha +4+2\alpha +2\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\alpha }^{2}}-2\alpha +6\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\alpha }^{2}}-2\alpha +1+5\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\left( \alpha -1 \right)}^{2}}+5\] ---(4).
We know that the value of the square of any real number is greater than or equal to zero $\left( \ge 0 \right)$. This gives us the minimum value of any square as 0.
So, the minimum value of \[{{\left( \alpha -1 \right)}^{2}}\] is 0. So, let us substitute this value in equation (4) to get the minimum value of \[{{p}^{2}}+{{q}^{2}}\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}=0+5\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}=5\].
So, we have found the minimum value of \[{{p}^{2}}+{{q}^{2}}\] as 5.
∴ The minimum value of \[{{p}^{2}}+{{q}^{2}}\] as 5.
So, the correct answer is “Option c”.
Note: We can alternatively solve for the minimum value of \[{{p}^{2}}+{{q}^{2}}\] as follows:
Let us assume \[{{p}^{2}}+{{q}^{2}}\] as a function of $\alpha $.
So, we have $f\left( \alpha \right)={{\alpha }^{2}}-2\alpha +6$.
Let's find the roots for ${{f}^{'}}\left( \alpha \right)=0$.
$\Rightarrow \dfrac{d}{d\alpha }\left( {{\alpha }^{2}}-2\alpha +6 \right)=0$.
$\Rightarrow 2\alpha -2=0$.
$\Rightarrow 2\alpha =2$.
$\Rightarrow \alpha =1$.
We know that if the value of the function ${{f}^{''}}\left( \alpha \right)$ is greater than zero at $\alpha =1$, then the function $f\left( \alpha \right)$ has minimum at $\alpha =1$.
$\Rightarrow {{f}^{''}}\left( \alpha \right)=\dfrac{d}{d\alpha }\left( 2\alpha -4 \right)$.
$\Rightarrow {{f}^{''}}\left( \alpha \right)=2$.
$\Rightarrow {{f}^{''}}\left( 1 \right)=2>0$.
So, we have the function minimum value at $\alpha =1$ for the function $f\left( \alpha \right)$.
So, the minimum value of $f\left( \alpha \right)$ is $f\left( 1 \right)$.
$\Rightarrow f\left( 1 \right)={{1}^{2}}-2\left( 1 \right)+6$.
$\Rightarrow f\left( 1 \right)=1-2+6$.
$\Rightarrow f\left( 1 \right)=5$.
The minimum value of \[{{p}^{2}}+{{q}^{2}}\] is 5.
Complete step-by-step answer:
According to the problem, we have a quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha =1\] which has roots p and q. We need to find the minimum value of $\left( {{p}^{2}}+{{q}^{2}} \right)$.
Let us convert the given quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha =1\] into the standard form $a{{x}^{2}}+bx+c=0$.
So, we have the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha -1=0\] ---(1).
We know that sum and product of the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ is $\dfrac{-b}{a}$ and $\dfrac{c}{a}$. We use this results in equation (1).
So, the sum of roots of the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha -1=0\] is $p+q=\dfrac{-\left( -\left( \alpha -2 \right) \right)}{1}$.
$\Rightarrow p+q=\alpha -2$ ---(2).
So, the product of roots of the quadratic equation \[{{x}^{2}}-\left( \alpha -2 \right)x-\alpha -1=0\] is $pq=\dfrac{-\alpha -1}{1}$.
$\Rightarrow pq=-\alpha -1$ ---(3).
Let us square on both sides in equation (2).
\[\Rightarrow {{\left( p+q \right)}^{2}}={{\left( \alpha -2 \right)}^{2}}\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}+2pq={{\alpha }^{2}}-4\alpha +4\].
From equation (3) we get,
\[\Rightarrow {{p}^{2}}+{{q}^{2}}+2\left( -\alpha -1 \right)={{\alpha }^{2}}-4\alpha +4\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}-2\alpha -2={{\alpha }^{2}}-4\alpha +4\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\alpha }^{2}}-4\alpha +4+2\alpha +2\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\alpha }^{2}}-2\alpha +6\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\alpha }^{2}}-2\alpha +1+5\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}={{\left( \alpha -1 \right)}^{2}}+5\] ---(4).
We know that the value of the square of any real number is greater than or equal to zero $\left( \ge 0 \right)$. This gives us the minimum value of any square as 0.
So, the minimum value of \[{{\left( \alpha -1 \right)}^{2}}\] is 0. So, let us substitute this value in equation (4) to get the minimum value of \[{{p}^{2}}+{{q}^{2}}\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}=0+5\].
\[\Rightarrow {{p}^{2}}+{{q}^{2}}=5\].
So, we have found the minimum value of \[{{p}^{2}}+{{q}^{2}}\] as 5.
∴ The minimum value of \[{{p}^{2}}+{{q}^{2}}\] as 5.
So, the correct answer is “Option c”.
Note: We can alternatively solve for the minimum value of \[{{p}^{2}}+{{q}^{2}}\] as follows:
Let us assume \[{{p}^{2}}+{{q}^{2}}\] as a function of $\alpha $.
So, we have $f\left( \alpha \right)={{\alpha }^{2}}-2\alpha +6$.
Let's find the roots for ${{f}^{'}}\left( \alpha \right)=0$.
$\Rightarrow \dfrac{d}{d\alpha }\left( {{\alpha }^{2}}-2\alpha +6 \right)=0$.
$\Rightarrow 2\alpha -2=0$.
$\Rightarrow 2\alpha =2$.
$\Rightarrow \alpha =1$.
We know that if the value of the function ${{f}^{''}}\left( \alpha \right)$ is greater than zero at $\alpha =1$, then the function $f\left( \alpha \right)$ has minimum at $\alpha =1$.
$\Rightarrow {{f}^{''}}\left( \alpha \right)=\dfrac{d}{d\alpha }\left( 2\alpha -4 \right)$.
$\Rightarrow {{f}^{''}}\left( \alpha \right)=2$.
$\Rightarrow {{f}^{''}}\left( 1 \right)=2>0$.
So, we have the function minimum value at $\alpha =1$ for the function $f\left( \alpha \right)$.
So, the minimum value of $f\left( \alpha \right)$ is $f\left( 1 \right)$.
$\Rightarrow f\left( 1 \right)={{1}^{2}}-2\left( 1 \right)+6$.
$\Rightarrow f\left( 1 \right)=1-2+6$.
$\Rightarrow f\left( 1 \right)=5$.
The minimum value of \[{{p}^{2}}+{{q}^{2}}\] is 5.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Gautam Buddha was born in the year A581 BC B563 BC class 10 social science CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE
