
If $ \overrightarrow r = \left( {x + y + 2} \right)\widehat i + \left( {2x - y + 3} \right)\widehat j + \left( {x + 2y + 7} \right)\widehat k $
Where \[\overrightarrow r .\widehat i = 3,\overrightarrow r .\widehat j = 5\] then $ \overline r .\widehat k = $
(A) $ 4 $
(B) $ 6 $
(C) $ 9 $
(D) $ 8 $
Answer
582.3k+ views
Hint: This type of question will be solved by using dot product properties. Remember the vector multiplication is nowhere similar to that of scalar multiplication as it involves direction along with magnitude.
Complete step-by-step answer:
In this question given that
$ \overrightarrow r = \left( {x + y + 2} \right)\widehat i + \left( {2x - y + 3} \right)\widehat j + \left( {x + 2y + 7} \right)\widehat k $ . . . (1)
and
\[\overrightarrow r .\widehat i = 3\]
$ \overrightarrow r .\widehat j = 5 $
$ \overrightarrow r .\widehat k = ? $
Multiply equation (1) by $ \widehat i $
\[ \Rightarrow \overrightarrow r .\widehat i = \left( {x + y + 2} \right)\widehat i.\widehat i + \left( {2x - y + 3} \right)\widehat j.\widehat i + \left( {x + 2y + 7} \right)\widehat k.\widehat i\] . . . (2)
$ \widehat i.\widehat i = \left| {\widehat i} \right|\left| {\widehat i} \right|\cos \theta = 1 $ $ (\because \theta = 0 $ and $ \cos 0 = 1) $
$ \widehat i.\widehat j = \left| {\widehat i} \right|\left| {\widehat j} \right|\cos \theta = 0 $ $ (\because \theta = {90^0} $ and $ \cos {90^0} = 0) $
Similarly, $ \widehat i.\widehat k = 0 $
By the above rule we can simplify equation (2) as,
$ \Rightarrow 3 = x + y + 2 + 0 + 0 $
On simplifying we get the
$ x + y = 1 $ . . . . (3)
Now,
Multiply equation (1) by $ \widehat j $
\[\overrightarrow r .\widehat j = \left( {x + y + 2} \right)\widehat i.\widehat j + \left( {2x - y + 3} \right)\widehat j.\widehat j + \left( {x + 2y + 7} \right)\widehat k.\widehat j\]
From the explanation we gave above, we can write
\[\widehat i.\widehat j = \widehat j.\widehat k = 0\] and \[\widehat j.\widehat j = 1\]
$ \Rightarrow 5 = 0 + 2x - y + 3 + 0 $
On simplifying the above equation, we get
$ 2x - y + 3 = 5 $
$ \Rightarrow 2x - y = 2 $ . . . (4)
Now, multiply equation (1) by \[\widehat k\]
\[\overrightarrow r .\widehat k = \left( {x + y + 2} \right)\widehat i.\widehat k + \left( {2x - y + 3} \right)\widehat j.\widehat k + \left( {x + 2y + 7} \right)\widehat k.\widehat k\]
Again, From the explanation we gave above, we can write
\[\widehat i.\widehat k = \widehat j.\widehat k = 0\] and \[\widehat k.\widehat k = 1\]
$ \Rightarrow \overrightarrow r .\widehat k = 0 + 0 + x + 2y + 7 $
$ \Rightarrow \overrightarrow r .\widehat k = x + 2y + 7 $ . . . (5)
Adding equation (3) and (4), we get
$ 3x = 3 $
$ \Rightarrow x = 1 $
Put this value of $ x $ in equation (3)
$ \Rightarrow 1 + y = 1 $
$ \Rightarrow y = 0 $
By substituting these values of $ x $ and $ y $ in equation (5) we get
$ \Rightarrow \overrightarrow r .\widehat k = 1 + 2 \times 0 + 7 $
$ \Rightarrow \overrightarrow r .\widehat k = 1 + 7 $
$ \Rightarrow \overrightarrow r .\widehat k = 8 $
Therefore, from the above explanation, the correct answer is option (D) $ 8 $
So, the correct answer is “Option D”.
Note: Unit vectors $ \widehat i,\widehat j $ and $ \widehat k $ represent positive X, Y and Z axis, respectively. Therefore, they are perpendicular to each other. Dot product of two perpendicular vectors is zero, since the angle between them is $ {90^0} $ and $ \cos {90^0} = 0 $ .
Perpendicular vectors are also called orthogonal vectors.
Complete step-by-step answer:
In this question given that
$ \overrightarrow r = \left( {x + y + 2} \right)\widehat i + \left( {2x - y + 3} \right)\widehat j + \left( {x + 2y + 7} \right)\widehat k $ . . . (1)
and
\[\overrightarrow r .\widehat i = 3\]
$ \overrightarrow r .\widehat j = 5 $
$ \overrightarrow r .\widehat k = ? $
Multiply equation (1) by $ \widehat i $
\[ \Rightarrow \overrightarrow r .\widehat i = \left( {x + y + 2} \right)\widehat i.\widehat i + \left( {2x - y + 3} \right)\widehat j.\widehat i + \left( {x + 2y + 7} \right)\widehat k.\widehat i\] . . . (2)
$ \widehat i.\widehat i = \left| {\widehat i} \right|\left| {\widehat i} \right|\cos \theta = 1 $ $ (\because \theta = 0 $ and $ \cos 0 = 1) $
$ \widehat i.\widehat j = \left| {\widehat i} \right|\left| {\widehat j} \right|\cos \theta = 0 $ $ (\because \theta = {90^0} $ and $ \cos {90^0} = 0) $
Similarly, $ \widehat i.\widehat k = 0 $
By the above rule we can simplify equation (2) as,
$ \Rightarrow 3 = x + y + 2 + 0 + 0 $
On simplifying we get the
$ x + y = 1 $ . . . . (3)
Now,
Multiply equation (1) by $ \widehat j $
\[\overrightarrow r .\widehat j = \left( {x + y + 2} \right)\widehat i.\widehat j + \left( {2x - y + 3} \right)\widehat j.\widehat j + \left( {x + 2y + 7} \right)\widehat k.\widehat j\]
From the explanation we gave above, we can write
\[\widehat i.\widehat j = \widehat j.\widehat k = 0\] and \[\widehat j.\widehat j = 1\]
$ \Rightarrow 5 = 0 + 2x - y + 3 + 0 $
On simplifying the above equation, we get
$ 2x - y + 3 = 5 $
$ \Rightarrow 2x - y = 2 $ . . . (4)
Now, multiply equation (1) by \[\widehat k\]
\[\overrightarrow r .\widehat k = \left( {x + y + 2} \right)\widehat i.\widehat k + \left( {2x - y + 3} \right)\widehat j.\widehat k + \left( {x + 2y + 7} \right)\widehat k.\widehat k\]
Again, From the explanation we gave above, we can write
\[\widehat i.\widehat k = \widehat j.\widehat k = 0\] and \[\widehat k.\widehat k = 1\]
$ \Rightarrow \overrightarrow r .\widehat k = 0 + 0 + x + 2y + 7 $
$ \Rightarrow \overrightarrow r .\widehat k = x + 2y + 7 $ . . . (5)
Adding equation (3) and (4), we get
$ 3x = 3 $
$ \Rightarrow x = 1 $
Put this value of $ x $ in equation (3)
$ \Rightarrow 1 + y = 1 $
$ \Rightarrow y = 0 $
By substituting these values of $ x $ and $ y $ in equation (5) we get
$ \Rightarrow \overrightarrow r .\widehat k = 1 + 2 \times 0 + 7 $
$ \Rightarrow \overrightarrow r .\widehat k = 1 + 7 $
$ \Rightarrow \overrightarrow r .\widehat k = 8 $
Therefore, from the above explanation, the correct answer is option (D) $ 8 $
So, the correct answer is “Option D”.
Note: Unit vectors $ \widehat i,\widehat j $ and $ \widehat k $ represent positive X, Y and Z axis, respectively. Therefore, they are perpendicular to each other. Dot product of two perpendicular vectors is zero, since the angle between them is $ {90^0} $ and $ \cos {90^0} = 0 $ .
Perpendicular vectors are also called orthogonal vectors.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

