
If $\overrightarrow a ,\overrightarrow b $ vectors perpendicular to each other and $\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3,\overrightarrow c \times \overrightarrow a = \overrightarrow b $then the least value of $2\left| {\overrightarrow c - \overrightarrow a } \right|$ is
Answer
572.4k+ views
Hint: To find the value of 2$\left| {\overrightarrow c - \overrightarrow a } \right|$, calculate the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$ and take square root of that value and multiply it with 2.
You can find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$by the formula given below:
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
Complete step by step answer:
Let us see what is given in the question, we have given the value of $|\overrightarrow a |\& |\overrightarrow b |$as follows
$ \Rightarrow |\overrightarrow a | = 2$and
$ \Rightarrow |\overrightarrow b | = 3$
First of all, find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
By opening the bracket and applying distributive property we get,
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c \left( {\overrightarrow c - \overrightarrow a } \right) - \overrightarrow a \left( {\overrightarrow c - \overrightarrow a } \right) \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c .\overrightarrow a - \overrightarrow a .\overrightarrow c + \overrightarrow a .\overrightarrow a \\
$
As $\overrightarrow a .\overrightarrow c = \overrightarrow c .\overrightarrow a $then we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c ..\overrightarrow a - \overrightarrow c .\overrightarrow a + \overrightarrow a \overrightarrow a $
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2}$…….(1)
Now, we have to find the value of $\overrightarrow a .\overrightarrow c $as given below
The dot product of a and c is given by
$ \Rightarrow \overrightarrow c .\overrightarrow a = |\overrightarrow c ||\overrightarrow a |\cos \theta $, where $\theta $ is the angle between a and c.
Putting the value $|\overrightarrow a | = 2$ in this we get,
$ \Rightarrow \overrightarrow c .\overrightarrow a = 2|\overrightarrow c |\cos \theta $
Now find the value of ${\left| {\overrightarrow c } \right|^{}}$by scalar product i.e.
$ \Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| \times \left| {\overrightarrow a } \right| = \left| {\overrightarrow c } \right|\left| {\overrightarrow a } \right|\sin \theta $
Putting the value of $|\overrightarrow a |\& |\overrightarrow b |$ we get,
$ \Rightarrow 3 = 2.\left| {\overrightarrow c } \right|\sin \theta $
$ \Rightarrow \left| {\overrightarrow c } \right| = \dfrac{3}{{2\sin \theta }}$
Put the value of $|\overrightarrow a |\& |\overrightarrow c |$ in equation (1) we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2} = {\overrightarrow {\left| c \right|} ^2} - 2.\overrightarrow {\left| c \right|} \overrightarrow {\left| a \right|} \cos \theta + {\overrightarrow {\left| a \right|} ^2}$=
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {(\dfrac{3}{{2\sin \theta }})^2} - 2(\dfrac{3}{{2\sin \theta }}).2\cos \theta + {2^2}$
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = (\dfrac{9}{{4{{\sin }^2}\theta }}) - (\dfrac{3}{{\sin \theta }}).2\cos \theta + {2^2} \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4 \\
\Rightarrow \left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
$
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{{4 \times 9}}{{4{{\sin }^2}\theta }} - \dfrac{{4 \times 6 \times \cos \theta }}{{sin\theta }} + 4 \times 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{{{\sin }^2}\theta }} - \dfrac{{24 \times \cos \theta }}{{sin\theta }} + 16} = \sqrt {9\cos e{c^2}\theta - 24 \times \cot \theta + 16} \\
$
As $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $, $\dfrac{1}{{{{\sin }^2}\theta }} = \cos e{c^2}\theta $ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$ we get,
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9(1 + {{\cot }^2}\theta ) - 24 \times \cot \theta + 16} = \sqrt {9 + 16 + 9{{\cot }^2}\theta - 24\cot \theta } \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9{{\cot }^2}\theta - 24\cot \theta + 25} \\
$
As, the minimum value of $\cot \theta $ is zero at $\theta = \dfrac{\pi }{2}$. Therefore,
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9 \times {{\cot }^2}\dfrac{\pi }{2} - 24\cot \dfrac{\pi }{2} + 25} $
As the minimum value of this vector can be obtained by putting $\theta = \dfrac{\pi }{2}$.
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {25} = 5$
Hence, 5 is the least value of $2\left| {\overrightarrow c - \overrightarrow a } \right|$.
Note: Some students get confused in cross and dot product as in the question it is already given that cross product of a and c is b. Some students consider it as a dot product and take cosine function. Your answer can get wrong. Secondly, while taking square we will take two vectors and we consider it as a dot product and use the cosine function. Take care of these things.
Types of vectors are given as follows:
Zero or Null Vector: When starting and ending points of a vector are the same is called zero or null vector.
Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is the same in like vectors.
You can find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$by the formula given below:
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
Complete step by step answer:
Let us see what is given in the question, we have given the value of $|\overrightarrow a |\& |\overrightarrow b |$as follows
$ \Rightarrow |\overrightarrow a | = 2$and
$ \Rightarrow |\overrightarrow b | = 3$
First of all, find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
By opening the bracket and applying distributive property we get,
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c \left( {\overrightarrow c - \overrightarrow a } \right) - \overrightarrow a \left( {\overrightarrow c - \overrightarrow a } \right) \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c .\overrightarrow a - \overrightarrow a .\overrightarrow c + \overrightarrow a .\overrightarrow a \\
$
As $\overrightarrow a .\overrightarrow c = \overrightarrow c .\overrightarrow a $then we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c ..\overrightarrow a - \overrightarrow c .\overrightarrow a + \overrightarrow a \overrightarrow a $
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2}$…….(1)
Now, we have to find the value of $\overrightarrow a .\overrightarrow c $as given below
The dot product of a and c is given by
$ \Rightarrow \overrightarrow c .\overrightarrow a = |\overrightarrow c ||\overrightarrow a |\cos \theta $, where $\theta $ is the angle between a and c.
Putting the value $|\overrightarrow a | = 2$ in this we get,
$ \Rightarrow \overrightarrow c .\overrightarrow a = 2|\overrightarrow c |\cos \theta $
Now find the value of ${\left| {\overrightarrow c } \right|^{}}$by scalar product i.e.
$ \Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| \times \left| {\overrightarrow a } \right| = \left| {\overrightarrow c } \right|\left| {\overrightarrow a } \right|\sin \theta $
Putting the value of $|\overrightarrow a |\& |\overrightarrow b |$ we get,
$ \Rightarrow 3 = 2.\left| {\overrightarrow c } \right|\sin \theta $
$ \Rightarrow \left| {\overrightarrow c } \right| = \dfrac{3}{{2\sin \theta }}$
Put the value of $|\overrightarrow a |\& |\overrightarrow c |$ in equation (1) we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2} = {\overrightarrow {\left| c \right|} ^2} - 2.\overrightarrow {\left| c \right|} \overrightarrow {\left| a \right|} \cos \theta + {\overrightarrow {\left| a \right|} ^2}$=
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {(\dfrac{3}{{2\sin \theta }})^2} - 2(\dfrac{3}{{2\sin \theta }}).2\cos \theta + {2^2}$
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = (\dfrac{9}{{4{{\sin }^2}\theta }}) - (\dfrac{3}{{\sin \theta }}).2\cos \theta + {2^2} \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4 \\
\Rightarrow \left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
$
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{{4 \times 9}}{{4{{\sin }^2}\theta }} - \dfrac{{4 \times 6 \times \cos \theta }}{{sin\theta }} + 4 \times 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{{{\sin }^2}\theta }} - \dfrac{{24 \times \cos \theta }}{{sin\theta }} + 16} = \sqrt {9\cos e{c^2}\theta - 24 \times \cot \theta + 16} \\
$
As $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $, $\dfrac{1}{{{{\sin }^2}\theta }} = \cos e{c^2}\theta $ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$ we get,
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9(1 + {{\cot }^2}\theta ) - 24 \times \cot \theta + 16} = \sqrt {9 + 16 + 9{{\cot }^2}\theta - 24\cot \theta } \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9{{\cot }^2}\theta - 24\cot \theta + 25} \\
$
As, the minimum value of $\cot \theta $ is zero at $\theta = \dfrac{\pi }{2}$. Therefore,
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9 \times {{\cot }^2}\dfrac{\pi }{2} - 24\cot \dfrac{\pi }{2} + 25} $
As the minimum value of this vector can be obtained by putting $\theta = \dfrac{\pi }{2}$.
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {25} = 5$
Hence, 5 is the least value of $2\left| {\overrightarrow c - \overrightarrow a } \right|$.
Note: Some students get confused in cross and dot product as in the question it is already given that cross product of a and c is b. Some students consider it as a dot product and take cosine function. Your answer can get wrong. Secondly, while taking square we will take two vectors and we consider it as a dot product and use the cosine function. Take care of these things.
Types of vectors are given as follows:
Zero or Null Vector: When starting and ending points of a vector are the same is called zero or null vector.
Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is the same in like vectors.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

