
If $\overrightarrow a ,\overrightarrow b $ vectors perpendicular to each other and $\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3,\overrightarrow c \times \overrightarrow a = \overrightarrow b $then the least value of $2\left| {\overrightarrow c - \overrightarrow a } \right|$ is
Answer
587.7k+ views
Hint: To find the value of 2$\left| {\overrightarrow c - \overrightarrow a } \right|$, calculate the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$ and take square root of that value and multiply it with 2.
You can find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$by the formula given below:
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
Complete step by step answer:
Let us see what is given in the question, we have given the value of $|\overrightarrow a |\& |\overrightarrow b |$as follows
$ \Rightarrow |\overrightarrow a | = 2$and
$ \Rightarrow |\overrightarrow b | = 3$
First of all, find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
By opening the bracket and applying distributive property we get,
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c \left( {\overrightarrow c - \overrightarrow a } \right) - \overrightarrow a \left( {\overrightarrow c - \overrightarrow a } \right) \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c .\overrightarrow a - \overrightarrow a .\overrightarrow c + \overrightarrow a .\overrightarrow a \\
$
As $\overrightarrow a .\overrightarrow c = \overrightarrow c .\overrightarrow a $then we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c ..\overrightarrow a - \overrightarrow c .\overrightarrow a + \overrightarrow a \overrightarrow a $
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2}$…….(1)
Now, we have to find the value of $\overrightarrow a .\overrightarrow c $as given below
The dot product of a and c is given by
$ \Rightarrow \overrightarrow c .\overrightarrow a = |\overrightarrow c ||\overrightarrow a |\cos \theta $, where $\theta $ is the angle between a and c.
Putting the value $|\overrightarrow a | = 2$ in this we get,
$ \Rightarrow \overrightarrow c .\overrightarrow a = 2|\overrightarrow c |\cos \theta $
Now find the value of ${\left| {\overrightarrow c } \right|^{}}$by scalar product i.e.
$ \Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| \times \left| {\overrightarrow a } \right| = \left| {\overrightarrow c } \right|\left| {\overrightarrow a } \right|\sin \theta $
Putting the value of $|\overrightarrow a |\& |\overrightarrow b |$ we get,
$ \Rightarrow 3 = 2.\left| {\overrightarrow c } \right|\sin \theta $
$ \Rightarrow \left| {\overrightarrow c } \right| = \dfrac{3}{{2\sin \theta }}$
Put the value of $|\overrightarrow a |\& |\overrightarrow c |$ in equation (1) we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2} = {\overrightarrow {\left| c \right|} ^2} - 2.\overrightarrow {\left| c \right|} \overrightarrow {\left| a \right|} \cos \theta + {\overrightarrow {\left| a \right|} ^2}$=
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {(\dfrac{3}{{2\sin \theta }})^2} - 2(\dfrac{3}{{2\sin \theta }}).2\cos \theta + {2^2}$
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = (\dfrac{9}{{4{{\sin }^2}\theta }}) - (\dfrac{3}{{\sin \theta }}).2\cos \theta + {2^2} \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4 \\
\Rightarrow \left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
$
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{{4 \times 9}}{{4{{\sin }^2}\theta }} - \dfrac{{4 \times 6 \times \cos \theta }}{{sin\theta }} + 4 \times 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{{{\sin }^2}\theta }} - \dfrac{{24 \times \cos \theta }}{{sin\theta }} + 16} = \sqrt {9\cos e{c^2}\theta - 24 \times \cot \theta + 16} \\
$
As $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $, $\dfrac{1}{{{{\sin }^2}\theta }} = \cos e{c^2}\theta $ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$ we get,
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9(1 + {{\cot }^2}\theta ) - 24 \times \cot \theta + 16} = \sqrt {9 + 16 + 9{{\cot }^2}\theta - 24\cot \theta } \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9{{\cot }^2}\theta - 24\cot \theta + 25} \\
$
As, the minimum value of $\cot \theta $ is zero at $\theta = \dfrac{\pi }{2}$. Therefore,
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9 \times {{\cot }^2}\dfrac{\pi }{2} - 24\cot \dfrac{\pi }{2} + 25} $
As the minimum value of this vector can be obtained by putting $\theta = \dfrac{\pi }{2}$.
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {25} = 5$
Hence, 5 is the least value of $2\left| {\overrightarrow c - \overrightarrow a } \right|$.
Note: Some students get confused in cross and dot product as in the question it is already given that cross product of a and c is b. Some students consider it as a dot product and take cosine function. Your answer can get wrong. Secondly, while taking square we will take two vectors and we consider it as a dot product and use the cosine function. Take care of these things.
Types of vectors are given as follows:
Zero or Null Vector: When starting and ending points of a vector are the same is called zero or null vector.
Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is the same in like vectors.
You can find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$by the formula given below:
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
Complete step by step answer:
Let us see what is given in the question, we have given the value of $|\overrightarrow a |\& |\overrightarrow b |$as follows
$ \Rightarrow |\overrightarrow a | = 2$and
$ \Rightarrow |\overrightarrow b | = 3$
First of all, find the value of ${\left| {\overrightarrow c - \overrightarrow a } \right|^2}$i.e.
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \left( {\overrightarrow c - \overrightarrow a } \right)\left( {\overrightarrow c - \overrightarrow a } \right)$
By opening the bracket and applying distributive property we get,
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c \left( {\overrightarrow c - \overrightarrow a } \right) - \overrightarrow a \left( {\overrightarrow c - \overrightarrow a } \right) \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c .\overrightarrow a - \overrightarrow a .\overrightarrow c + \overrightarrow a .\overrightarrow a \\
$
As $\overrightarrow a .\overrightarrow c = \overrightarrow c .\overrightarrow a $then we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \overrightarrow c .\overrightarrow c - \overrightarrow c ..\overrightarrow a - \overrightarrow c .\overrightarrow a + \overrightarrow a \overrightarrow a $
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2}$…….(1)
Now, we have to find the value of $\overrightarrow a .\overrightarrow c $as given below
The dot product of a and c is given by
$ \Rightarrow \overrightarrow c .\overrightarrow a = |\overrightarrow c ||\overrightarrow a |\cos \theta $, where $\theta $ is the angle between a and c.
Putting the value $|\overrightarrow a | = 2$ in this we get,
$ \Rightarrow \overrightarrow c .\overrightarrow a = 2|\overrightarrow c |\cos \theta $
Now find the value of ${\left| {\overrightarrow c } \right|^{}}$by scalar product i.e.
$ \Rightarrow \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| \times \left| {\overrightarrow a } \right| = \left| {\overrightarrow c } \right|\left| {\overrightarrow a } \right|\sin \theta $
Putting the value of $|\overrightarrow a |\& |\overrightarrow b |$ we get,
$ \Rightarrow 3 = 2.\left| {\overrightarrow c } \right|\sin \theta $
$ \Rightarrow \left| {\overrightarrow c } \right| = \dfrac{3}{{2\sin \theta }}$
Put the value of $|\overrightarrow a |\& |\overrightarrow c |$ in equation (1) we get,
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {\overrightarrow {\left| c \right|} ^2} - 2\overrightarrow c .\overrightarrow a + {\overrightarrow {\left| a \right|} ^2} = {\overrightarrow {\left| c \right|} ^2} - 2.\overrightarrow {\left| c \right|} \overrightarrow {\left| a \right|} \cos \theta + {\overrightarrow {\left| a \right|} ^2}$=
$ \Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = {(\dfrac{3}{{2\sin \theta }})^2} - 2(\dfrac{3}{{2\sin \theta }}).2\cos \theta + {2^2}$
$
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = (\dfrac{9}{{4{{\sin }^2}\theta }}) - (\dfrac{3}{{\sin \theta }}).2\cos \theta + {2^2} \\
\Rightarrow {\left| {\overrightarrow c - \overrightarrow a } \right|^2} = \dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4 \\
\Rightarrow \left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = 2\sqrt {\dfrac{9}{{4{{\sin }^2}\theta }} - \dfrac{{6\cos \theta }}{{sin\theta }} + 4} \\
$
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{{4 \times 9}}{{4{{\sin }^2}\theta }} - \dfrac{{4 \times 6 \times \cos \theta }}{{sin\theta }} + 4 \times 4} \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {\dfrac{9}{{{{\sin }^2}\theta }} - \dfrac{{24 \times \cos \theta }}{{sin\theta }} + 16} = \sqrt {9\cos e{c^2}\theta - 24 \times \cot \theta + 16} \\
$
As $\dfrac{{\cos \theta }}{{\sin \theta }} = \cot \theta $, $\dfrac{1}{{{{\sin }^2}\theta }} = \cos e{c^2}\theta $ and $\cos e{c^2}\theta = {\cot ^2}\theta + 1$ we get,
$
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9(1 + {{\cot }^2}\theta ) - 24 \times \cot \theta + 16} = \sqrt {9 + 16 + 9{{\cot }^2}\theta - 24\cot \theta } \\
\Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9{{\cot }^2}\theta - 24\cot \theta + 25} \\
$
As, the minimum value of $\cot \theta $ is zero at $\theta = \dfrac{\pi }{2}$. Therefore,
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {9 \times {{\cot }^2}\dfrac{\pi }{2} - 24\cot \dfrac{\pi }{2} + 25} $
As the minimum value of this vector can be obtained by putting $\theta = \dfrac{\pi }{2}$.
$ \Rightarrow 2\left| {\overrightarrow c - \overrightarrow a } \right| = \sqrt {25} = 5$
Hence, 5 is the least value of $2\left| {\overrightarrow c - \overrightarrow a } \right|$.
Note: Some students get confused in cross and dot product as in the question it is already given that cross product of a and c is b. Some students consider it as a dot product and take cosine function. Your answer can get wrong. Secondly, while taking square we will take two vectors and we consider it as a dot product and use the cosine function. Take care of these things.
Types of vectors are given as follows:
Zero or Null Vector: When starting and ending points of a vector are the same is called zero or null vector.
Unit Vector: If the magnitude of a vector is unity then the vector is called a unit vector.
Free Vectors: When the initial point of a vector is not defined then those types of vectors are said to be free vectors.
Negative of a Vector: A vector is said to be a negative vector if the magnitude of a vector is the same as the given vector but the direction is opposite to it.
Like and Unlike Vectors: Unlike vectors are the vectors whose direction is opposite to each other but the direction of both is the same in like vectors.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

