
If \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system and\[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\], then find the value of\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]
A. \[24\]
B. \[ - 24\]
C. \[12\]
D. \[ - 12\]
Answer
576.9k+ views
Hint: Initially, we will find the magnitude of each vector. Then using some formulas which are mentioned below, we will find our required answer.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

