If \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system and\[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\], then find the value of\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]
A. \[24\]
B. \[ - 24\]
C. \[12\]
D. \[ - 12\]
Answer
Verified
478.2k+ views
Hint: Initially, we will find the magnitude of each vector. Then using some formulas which are mentioned below, we will find our required answer.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE