
If \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system and\[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\], then find the value of\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]
A. \[24\]
B. \[ - 24\]
C. \[12\]
D. \[ - 12\]
Answer
591.6k+ views
Hint: Initially, we will find the magnitude of each vector. Then using some formulas which are mentioned below, we will find our required answer.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Used formula: \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\]
\[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Complete answer:.It is given that, \[\overrightarrow a ,\overrightarrow b ,\overrightarrow c \] form a left-handed orthogonal system.
Also provided that, \[\overrightarrow a .\overrightarrow a = 4,\overrightarrow b .\overrightarrow b = 9,\overrightarrow {c.} \overrightarrow c = 16\]
We know that,
\[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2}\],
So, according to the problem using the values given we get, \[\overrightarrow a .\overrightarrow a = {\left| {\overrightarrow a } \right|^2} = 4\]
So, we have, ${\left| {\overrightarrow a } \right|} = 2$
Similarly, we will find ${\left| {\overrightarrow b } \right|} = 3$, ${\left| {\overrightarrow c } \right|} = 4$
Now we know that $\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] $ is given by the formula,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
Here, the angle between the vectors \[\overrightarrow a ,\overrightarrow b \times \overrightarrow c \] is \[{180^ \circ }\]. Since, \[\overrightarrow b \times \overrightarrow c \] is exactly opposite to the vector \[\overrightarrow a ,\]
On simplifying using the angle mentioned above we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\cos {180^ \circ }\]
We know the trigonometric values of \[\cos \theta \]then we get, \[\cos {180^ \circ } = - 1\]
Substitute the value into the above expression we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|.\left| {\overrightarrow b \times \overrightarrow c } \right|\] …. (1)
Now we will consider the value of\[\left| {\overrightarrow b \times \overrightarrow c } \right|\].
\[\left| {\overrightarrow b \times \overrightarrow c } \right| = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Since, the angle between the vectors \[\overrightarrow b \] and \[\overrightarrow c \] is \[{90^ \circ }\]the value of \[\theta \] is replaced by\[{90^ \circ }\] .
Substitute this value at the expression (1) we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin {90^ \circ }\]
Applying the trigonometric value of sine function we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - \left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\]
Now let us put the values of \[\left| {\overrightarrow a } \right| = 2\],\[\left| {\overrightarrow b } \right| = 3\], \[\left| {\overrightarrow c } \right| = 4\] in the above equation, we get,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 2 \times 3 \times 4 = - 24\]
Hence,
\[\overrightarrow a .(\overrightarrow b \times \overrightarrow c ) = - 24\]
That is the value of \[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is\[ - 24\]
Therefore, the correct option is (B)\[ - 24\].
Note: Let us consider the two vectors \[\overrightarrow b \] and \[\overrightarrow c \].
Then, \[\overrightarrow b \times \overrightarrow c = \left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin \theta \]
Since, the given system is left-handed, orthogonal the angle between vectors \[\overrightarrow b \] and \[\overrightarrow c \]\[{90^ \circ }\].
Again,
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right] = \overrightarrow a .(\overrightarrow b \times \overrightarrow c )\]
\[\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]\]is defined as the box product of the given vectors, the box product is nothing but the combination of dot product with cross product.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

