
If $\omega $ is the cube root of the unity, then prove that $1+\omega +{{\omega }^{2}}=0$.
Answer
593.7k+ views
Hint: For solving this first we will find the value of cube roots of unity by solving the equation ${{z}^{3}}=1$ where $z$ is a complex number. After that, we will define $\omega $ , ${{\omega }^{2}}$ and find their values. Then, we will add them and prove the result $1+\omega +{{\omega }^{2}}=0$ easily.
Complete step-by-step solution -
Given:
It is given that, $\omega $ is the cube root of the unity and we have to prove that, $1+\omega +{{\omega }^{2}}=0$ .
Now, before we proceed we should know the result of “DE-MOIVERE’S Theorem”.
DE-MOIVERE’S THEOREM:
Statement: If $n\in Z$ (the set of integers), then ${{\left( \cos \theta +i\sin \theta \right)}^{k}}=\cos \left( k\theta \right)+i\sin \left( k\theta \right)$ .
Now, let $z$ be any complex number such that, ${{z}^{3}}=1$ .
Now, we can write $1=\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right)$ in the equation ${{z}^{3}}=1$ . Then,
$\begin{align}
& {{z}^{3}}=1 \\
& \Rightarrow {{z}^{3}}=\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \\
& \Rightarrow z={{\left( \cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \right)}^{\dfrac{1}{3}}} \\
\end{align}$
Now, there should be three values of $z$ so, we write $\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right)=\cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right)$ , where $r=0,1,2$ in the above equation. Then,
$\begin{align}
& z={{\left( \cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow z={{\left( \cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) \right)}^{\dfrac{1}{3}}} \\
\end{align}$
Now, apply “DE-MOIVERE’S Theorem” in the above equation. Then,
$\begin{align}
& z={{\left( \cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow z=\cos \left( \dfrac{2r\pi }{3} \right)+i\sin \left( \dfrac{2r\pi }{3} \right) \\
\end{align}$
Now, as we know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ . Then,
$\begin{align}
& z=\cos \left( \dfrac{2r\pi }{3} \right)+i\sin \left( \dfrac{2r\pi }{3} \right) \\
& \Rightarrow z={{e}^{i\dfrac{2r\pi }{3}}} \\
\end{align}$
Now, for $r=0$ the value of $z=1$ , for $r=2$ the value of $z={{e}^{i\dfrac{2\pi }{3}}}$ and for $r=2$ the value of $z={{e}^{i\dfrac{4\pi }{3}}}$ . Moreover, we define $\omega ={{e}^{i\dfrac{2\pi }{3}}}$ and ${{\omega }^{2}}={{e}^{i\dfrac{4\pi }{3}}}$ as two non-real cube roots of unity.
Now, we will find the value of $\omega ={{e}^{i\dfrac{2\pi }{3}}}$ and ${{\omega }^{2}} = {{e}^{i\dfrac{4\pi }{3}}}$ with the help of the formula ${{e}^{i\theta }}=\cos \theta +i\sin \theta $. Then,
$\begin{align}
& \omega ={{e}^{i\dfrac{2\pi }{3}}} \\
& \Rightarrow \omega =\cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \\
& \Rightarrow \omega =\cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \\
& \Rightarrow \omega =-\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \\
& \Rightarrow \omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \\
& {{\omega }^{2}}={{e}^{i\dfrac{4\pi }{3}}} \\
& \Rightarrow {{\omega }^{2}}=\cos \left( \dfrac{4\pi }{3} \right)+i\sin \left( \dfrac{4\pi }{3} \right) \\
& \Rightarrow {{\omega }^{2}}=\cos \left( \pi +\dfrac{\pi }{3} \right)+i\sin \left( \pi +\dfrac{\pi }{3} \right) \\
& \Rightarrow {{\omega }^{2}}=-\cos \dfrac{\pi }{3}-i\sin \dfrac{\pi }{3} \\
& \Rightarrow {{\omega }^{2}}=-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \\
\end{align}$
Now, from the above results, we got $\omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}$ and ${{\omega }^{2}}=-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}$ . Then,
$\begin{align}
& \omega +{{\omega }^{2}}=-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \omega +{{\omega }^{2}}=-\dfrac{1}{2}-\dfrac{1}{2}+i\left( \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2} \right) \\
& \Rightarrow \omega +{{\omega }^{2}}=-1+i\left( 0 \right) \\
& \Rightarrow \omega +{{\omega }^{2}}+1=0 \\
\end{align}$
Now, from the above result, we conclude that $1+\omega +{{\omega }^{2}}=0$ .
Thus, if $\omega $ is the cube root of the unity, then $1+\omega +{{\omega }^{2}}=0$ .
Hence, proved.
Note: Here, the student should first understand and then proceed in the right direction to prove the result perfectly. After that, we should apply every fundamental result and theorem precisely without any error. Moreover, we should know that cube roots of the unity form a G.P. with a common ratio $\omega $. And for objective problems, we should remember this result.
Complete step-by-step solution -
Given:
It is given that, $\omega $ is the cube root of the unity and we have to prove that, $1+\omega +{{\omega }^{2}}=0$ .
Now, before we proceed we should know the result of “DE-MOIVERE’S Theorem”.
DE-MOIVERE’S THEOREM:
Statement: If $n\in Z$ (the set of integers), then ${{\left( \cos \theta +i\sin \theta \right)}^{k}}=\cos \left( k\theta \right)+i\sin \left( k\theta \right)$ .
Now, let $z$ be any complex number such that, ${{z}^{3}}=1$ .
Now, we can write $1=\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right)$ in the equation ${{z}^{3}}=1$ . Then,
$\begin{align}
& {{z}^{3}}=1 \\
& \Rightarrow {{z}^{3}}=\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \\
& \Rightarrow z={{\left( \cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \right)}^{\dfrac{1}{3}}} \\
\end{align}$
Now, there should be three values of $z$ so, we write $\cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right)=\cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right)$ , where $r=0,1,2$ in the above equation. Then,
$\begin{align}
& z={{\left( \cos \left( {{0}^{0}} \right)+i\sin \left( {{0}^{0}} \right) \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow z={{\left( \cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) \right)}^{\dfrac{1}{3}}} \\
\end{align}$
Now, apply “DE-MOIVERE’S Theorem” in the above equation. Then,
$\begin{align}
& z={{\left( \cos \left( 2r\pi \right)+i\sin \left( 2r\pi \right) \right)}^{\dfrac{1}{3}}} \\
& \Rightarrow z=\cos \left( \dfrac{2r\pi }{3} \right)+i\sin \left( \dfrac{2r\pi }{3} \right) \\
\end{align}$
Now, as we know that ${{e}^{i\theta }}=\cos \theta +i\sin \theta $ . Then,
$\begin{align}
& z=\cos \left( \dfrac{2r\pi }{3} \right)+i\sin \left( \dfrac{2r\pi }{3} \right) \\
& \Rightarrow z={{e}^{i\dfrac{2r\pi }{3}}} \\
\end{align}$
Now, for $r=0$ the value of $z=1$ , for $r=2$ the value of $z={{e}^{i\dfrac{2\pi }{3}}}$ and for $r=2$ the value of $z={{e}^{i\dfrac{4\pi }{3}}}$ . Moreover, we define $\omega ={{e}^{i\dfrac{2\pi }{3}}}$ and ${{\omega }^{2}}={{e}^{i\dfrac{4\pi }{3}}}$ as two non-real cube roots of unity.
Now, we will find the value of $\omega ={{e}^{i\dfrac{2\pi }{3}}}$ and ${{\omega }^{2}} = {{e}^{i\dfrac{4\pi }{3}}}$ with the help of the formula ${{e}^{i\theta }}=\cos \theta +i\sin \theta $. Then,
$\begin{align}
& \omega ={{e}^{i\dfrac{2\pi }{3}}} \\
& \Rightarrow \omega =\cos \left( \dfrac{2\pi }{3} \right)+i\sin \left( \dfrac{2\pi }{3} \right) \\
& \Rightarrow \omega =\cos \left( \pi -\dfrac{\pi }{3} \right)+i\sin \left( \pi -\dfrac{\pi }{3} \right) \\
& \Rightarrow \omega =-\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3} \\
& \Rightarrow \omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2} \\
& {{\omega }^{2}}={{e}^{i\dfrac{4\pi }{3}}} \\
& \Rightarrow {{\omega }^{2}}=\cos \left( \dfrac{4\pi }{3} \right)+i\sin \left( \dfrac{4\pi }{3} \right) \\
& \Rightarrow {{\omega }^{2}}=\cos \left( \pi +\dfrac{\pi }{3} \right)+i\sin \left( \pi +\dfrac{\pi }{3} \right) \\
& \Rightarrow {{\omega }^{2}}=-\cos \dfrac{\pi }{3}-i\sin \dfrac{\pi }{3} \\
& \Rightarrow {{\omega }^{2}}=-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \\
\end{align}$
Now, from the above results, we got $\omega =-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}$ and ${{\omega }^{2}}=-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2}$ . Then,
$\begin{align}
& \omega +{{\omega }^{2}}=-\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}-i\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \omega +{{\omega }^{2}}=-\dfrac{1}{2}-\dfrac{1}{2}+i\left( \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{2} \right) \\
& \Rightarrow \omega +{{\omega }^{2}}=-1+i\left( 0 \right) \\
& \Rightarrow \omega +{{\omega }^{2}}+1=0 \\
\end{align}$
Now, from the above result, we conclude that $1+\omega +{{\omega }^{2}}=0$ .
Thus, if $\omega $ is the cube root of the unity, then $1+\omega +{{\omega }^{2}}=0$ .
Hence, proved.
Note: Here, the student should first understand and then proceed in the right direction to prove the result perfectly. After that, we should apply every fundamental result and theorem precisely without any error. Moreover, we should know that cube roots of the unity form a G.P. with a common ratio $\omega $. And for objective problems, we should remember this result.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

