
If $\omega $ is the complex cube root of unity then, show that $\left( {a - b} \right)\left( {a - b\omega } \right)\left( {a - b{\omega ^2}} \right) = {a^3} - {b^3}$.
Answer
453.6k+ views
Hint: Here in this question for showing the equality of the equations we will use the left hand side of the equation. So by using the LHS and solving the braces by the multiplication we can get to the values of the RHS easily.
Complete step by step answer:
Here, we have an equation given as $\left( {a - b} \right)\left( {a - b\omega } \right)\left( {a - b{\omega ^2}} \right) = {a^3} - {b^3}$
So, by taking the LHS of the equation we will get the equation as
$ \Rightarrow \left( {a - b} \right)\left( {a - b\omega } \right)\left( {a - b{\omega ^2}} \right)$
Now on multiplying, we will get the equation as
$ \Rightarrow \left( {{a^2} - ab\omega - ab - {b^2}\omega } \right)\left( {a - b{\omega ^2}} \right)$
And on multiplying furthermore, we will get the equation as
$ \Rightarrow \left( {{a^3} - {a^2}b\omega - {a^2}b\iota {\omega ^2} + a{b^2}{\omega ^3} - {a^2}b + a{b^2}{\omega ^2} + a{b^2}\omega - {b^3}{\omega ^3}} \right)$
Since, we know that ${\omega ^3} = 1\,\,\& \,\,\left[ {\omega + {\omega ^2} = - 1} \right]$
Now on solving it furthermore, we get
\[ \Rightarrow {a^3} - {a^2}b\left( {\omega + {\omega ^2}} \right) + a{b^2}\left( {\omega + {\omega ^2}} \right) + a{b^2} - {b^3} - {a^2}b\]
And on expanding the equation, we will get the equation as
\[ \Rightarrow {a^3} - {a^2}b + a{b^2} + a{b^2} - {b^3} - {a^2}b\]
Since, the same term will cancel each other. Therefore we will get the values as ${a^3} - {b^3}$.
Hence, it is proved that the LHS is equal to the RHS.
Note:
For solving this type of question, either we can go with the LHS and RHS and by solving it, we will get the answer. But also by taking the RHS we can solve this route easily. So by using the formula which is given by ${\omega ^3} = 1\,\,\& \,\,\left[ {\omega + {\omega ^2} = - 1} \right]$. We can easily solve such questions.
Complete step by step answer:
Here, we have an equation given as $\left( {a - b} \right)\left( {a - b\omega } \right)\left( {a - b{\omega ^2}} \right) = {a^3} - {b^3}$
So, by taking the LHS of the equation we will get the equation as
$ \Rightarrow \left( {a - b} \right)\left( {a - b\omega } \right)\left( {a - b{\omega ^2}} \right)$
Now on multiplying, we will get the equation as
$ \Rightarrow \left( {{a^2} - ab\omega - ab - {b^2}\omega } \right)\left( {a - b{\omega ^2}} \right)$
And on multiplying furthermore, we will get the equation as
$ \Rightarrow \left( {{a^3} - {a^2}b\omega - {a^2}b\iota {\omega ^2} + a{b^2}{\omega ^3} - {a^2}b + a{b^2}{\omega ^2} + a{b^2}\omega - {b^3}{\omega ^3}} \right)$
Since, we know that ${\omega ^3} = 1\,\,\& \,\,\left[ {\omega + {\omega ^2} = - 1} \right]$
Now on solving it furthermore, we get
\[ \Rightarrow {a^3} - {a^2}b\left( {\omega + {\omega ^2}} \right) + a{b^2}\left( {\omega + {\omega ^2}} \right) + a{b^2} - {b^3} - {a^2}b\]
And on expanding the equation, we will get the equation as
\[ \Rightarrow {a^3} - {a^2}b + a{b^2} + a{b^2} - {b^3} - {a^2}b\]
Since, the same term will cancel each other. Therefore we will get the values as ${a^3} - {b^3}$.
Hence, it is proved that the LHS is equal to the RHS.
Note:
For solving this type of question, either we can go with the LHS and RHS and by solving it, we will get the answer. But also by taking the RHS we can solve this route easily. So by using the formula which is given by ${\omega ^3} = 1\,\,\& \,\,\left[ {\omega + {\omega ^2} = - 1} \right]$. We can easily solve such questions.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Why do you think did the narrator call lie Amsterdam class 11 english CBSE

Tentacles of Hydra are A Hollow B Solid C Half hollow class 11 biology CBSE

What do you mean by public facilities
