
If $\omega $is the complex cube root of unity, then the value of $\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}} + \dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ is-
a)0
b)-1
c)1
d)2
Answer
614.7k+ views
Hint- we will take both the parts of this addition equation and solve them separately. After solving then separately and simplifying them to some extent, we will take both the simplified equations and add them in the end.
Complete step-by-step answer:
Breaking the given equation into two different equations, we have-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}} + \dfrac{{a +
b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ (given equation)
After breaking we will have two equations-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}}$ $ \to $
equation 1
$\dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ $ \to $
equation 2
Solving equation 1 first, we have-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}}$ (this is
equation 1)
Now, we will multiply both numerator and denominator by ${\omega ^2}$, we will get:
$
\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{{\omega ^2}\left( {c +
a\omega + b{\omega ^2}} \right)}} \\
\\
\Rightarrow \dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left(
{c{\omega ^2} + a{\omega ^3} + b{\omega ^4}} \right)}} \\
$
Solving equation 2 now, we have-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ (this is equation
2)
Now, we will multiply both numerator and denominator by $\omega $, we will get:
$
\dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\omega \left( {b + c\omega +
a{\omega ^2}} \right)}} \\
\\
\Rightarrow \dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {b\omega
+ c{\omega ^2} + a{\omega ^3}} \right)}} \\
$
Now, let $\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {c{\omega
^2} + a{\omega ^3} + b{\omega ^4}} \right)}}$ be equation 3 and $\dfrac{{\omega \left( {a +
b\omega + c{\omega ^2}} \right)}}{{\left( {b\omega + c{\omega ^2} + a{\omega ^3}}
\right)}}$ be equation 4, we get-
$\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {c{\omega ^2} +
a{\omega ^3} + b{\omega ^4}} \right)}}$ $ \to $ equation 3
$\dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {b\omega + c{\omega
^2} + a{\omega ^3}} \right)}}$ $ \to $ equation 4
Adding the equations mentioned above i.e. equation number 3 and equation number 4, we
will have this equation-
$\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {c{\omega ^2} +
a{\omega ^3} + b{\omega ^4}} \right)}} + \dfrac{{\omega \left( {a + b\omega + c{\omega ^2}}
\right)}}{{\left( {b\omega + c{\omega ^2} + a{\omega ^3}} \right)}}$
Solving the equation further and taking the numerator common and then taking the LCM,
we will have:
$\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {a + b\omega +
c{\omega ^2}} \right)}} + \dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left(
{a + b\omega + c{\omega ^2}} \right)}}$
Cancelling the equation $a + b\omega + c{\omega ^2}$ which is same in both the equations
in numerator and denominator-
${\omega ^2} + \omega = - 1$
Hence the simplified value of the given equation is -1.
Note: To simplify the equations, always opt for the way of dividing them into two parts so that it won’t be congested and also solve them separately by naming the equations one or two. After solving separately, bring them together and carry on with the question.
Complete step-by-step answer:
Breaking the given equation into two different equations, we have-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}} + \dfrac{{a +
b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ (given equation)
After breaking we will have two equations-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}}$ $ \to $
equation 1
$\dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ $ \to $
equation 2
Solving equation 1 first, we have-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{c + a\omega + b{\omega ^2}}}$ (this is
equation 1)
Now, we will multiply both numerator and denominator by ${\omega ^2}$, we will get:
$
\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{{\omega ^2}\left( {c +
a\omega + b{\omega ^2}} \right)}} \\
\\
\Rightarrow \dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left(
{c{\omega ^2} + a{\omega ^3} + b{\omega ^4}} \right)}} \\
$
Solving equation 2 now, we have-
$\dfrac{{a + b\omega + c{\omega ^2}}}{{b + c\omega + a{\omega ^2}}}$ (this is equation
2)
Now, we will multiply both numerator and denominator by $\omega $, we will get:
$
\dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\omega \left( {b + c\omega +
a{\omega ^2}} \right)}} \\
\\
\Rightarrow \dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {b\omega
+ c{\omega ^2} + a{\omega ^3}} \right)}} \\
$
Now, let $\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {c{\omega
^2} + a{\omega ^3} + b{\omega ^4}} \right)}}$ be equation 3 and $\dfrac{{\omega \left( {a +
b\omega + c{\omega ^2}} \right)}}{{\left( {b\omega + c{\omega ^2} + a{\omega ^3}}
\right)}}$ be equation 4, we get-
$\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {c{\omega ^2} +
a{\omega ^3} + b{\omega ^4}} \right)}}$ $ \to $ equation 3
$\dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {b\omega + c{\omega
^2} + a{\omega ^3}} \right)}}$ $ \to $ equation 4
Adding the equations mentioned above i.e. equation number 3 and equation number 4, we
will have this equation-
$\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {c{\omega ^2} +
a{\omega ^3} + b{\omega ^4}} \right)}} + \dfrac{{\omega \left( {a + b\omega + c{\omega ^2}}
\right)}}{{\left( {b\omega + c{\omega ^2} + a{\omega ^3}} \right)}}$
Solving the equation further and taking the numerator common and then taking the LCM,
we will have:
$\dfrac{{{\omega ^2}\left( {a + b\omega + c{\omega ^2}} \right)}}{{\left( {a + b\omega +
c{\omega ^2}} \right)}} + \dfrac{{\omega \left( {a + b\omega + c{\omega ^2}} \right)}}{{\left(
{a + b\omega + c{\omega ^2}} \right)}}$
Cancelling the equation $a + b\omega + c{\omega ^2}$ which is same in both the equations
in numerator and denominator-
${\omega ^2} + \omega = - 1$
Hence the simplified value of the given equation is -1.
Note: To simplify the equations, always opt for the way of dividing them into two parts so that it won’t be congested and also solve them separately by naming the equations one or two. After solving separately, bring them together and carry on with the question.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

