If ${}^n{P_r} = 840$ , ${}^n{C_r} = 35$ then find the value of n-
A.$6$
B.$7$
C.$8$
D.$9$
Answer
Verified
475.2k+ views
Hint: Use the following formulae- ${}^n{P_r} = \dfrac{{n!}}{{n - r!}}$ and ${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ where n=total number of things
And r=number of things to be selected. Put the given values and solve for n.
Complete step-by-step answer:
Given, ${}^n{P_r} = 840$- (i)
And ${}^n{C_r} = 35$- (ii)
We have to find the value of n.
We know that- ${}^n{P_r} = \dfrac{{n!}}{{n - r!}}$ where n=total number of things and r=number of things to be selected.
On putting the given value we get in the formula we get,
$ \Rightarrow \dfrac{{n!}}{{n - r!}} = 840$ - (iii)
Also ${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ where n=total number of things and r=number of things to be selected.
On putting the value in this formula we get,
$ \Rightarrow \dfrac{{n!}}{{r!n - r!}} = 35$ - (iv)
On substituting the value from eq. (iii) to eq. (iv), we get,
$ \Rightarrow \dfrac{{840}}{{r!}} = 35$
On cross multiplication we get,
$ \Rightarrow $ $r! = \dfrac{{840}}{{35}}$
On dividing the numerator by denominator, we get
$ \Rightarrow r! = 24$
We can break $24$ into its factors then,
$ \Rightarrow r! = 4 \times 3 \times 2 \times 1 = 4!$
This means that r=$4$
On substituting the value of r in eq. (i)
$ \Rightarrow \dfrac{{n!}}{{n - 4!}} = 840$
On opening factorial of numerator we get,
$ \Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{n - 4!}} = 840$
On solving we get,
$ \Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 840$
On breaking $840$ into factors, we get
$ \Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 42 \times 20$
On further breaking the factors we get,
$ \Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 7 \times 6 \times 5 \times 4$
By observing the above equation we can see that the left hand side become equal to right hand side only when-
$ \Rightarrow n = 7$
Hence, the correct option is ‘B’.
Note: We can also find the value of r in above question using the formula-
$ \Rightarrow {}^n{P_r} = {}^n{C_r} \times r!$
We can directly obtain value of r by putting the given values-
$ \Rightarrow r! = \dfrac{{840}}{{35}} = 24$
We can then solve the question in the same manner as we solved in the above solution.
And r=number of things to be selected. Put the given values and solve for n.
Complete step-by-step answer:
Given, ${}^n{P_r} = 840$- (i)
And ${}^n{C_r} = 35$- (ii)
We have to find the value of n.
We know that- ${}^n{P_r} = \dfrac{{n!}}{{n - r!}}$ where n=total number of things and r=number of things to be selected.
On putting the given value we get in the formula we get,
$ \Rightarrow \dfrac{{n!}}{{n - r!}} = 840$ - (iii)
Also ${}^n{C_r} = \dfrac{{n!}}{{r!n - r!}}$ where n=total number of things and r=number of things to be selected.
On putting the value in this formula we get,
$ \Rightarrow \dfrac{{n!}}{{r!n - r!}} = 35$ - (iv)
On substituting the value from eq. (iii) to eq. (iv), we get,
$ \Rightarrow \dfrac{{840}}{{r!}} = 35$
On cross multiplication we get,
$ \Rightarrow $ $r! = \dfrac{{840}}{{35}}$
On dividing the numerator by denominator, we get
$ \Rightarrow r! = 24$
We can break $24$ into its factors then,
$ \Rightarrow r! = 4 \times 3 \times 2 \times 1 = 4!$
This means that r=$4$
On substituting the value of r in eq. (i)
$ \Rightarrow \dfrac{{n!}}{{n - 4!}} = 840$
On opening factorial of numerator we get,
$ \Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{n - 4!}} = 840$
On solving we get,
$ \Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 840$
On breaking $840$ into factors, we get
$ \Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 42 \times 20$
On further breaking the factors we get,
$ \Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) = 7 \times 6 \times 5 \times 4$
By observing the above equation we can see that the left hand side become equal to right hand side only when-
$ \Rightarrow n = 7$
Hence, the correct option is ‘B’.
Note: We can also find the value of r in above question using the formula-
$ \Rightarrow {}^n{P_r} = {}^n{C_r} \times r!$
We can directly obtain value of r by putting the given values-
$ \Rightarrow r! = \dfrac{{840}}{{35}} = 24$
We can then solve the question in the same manner as we solved in the above solution.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE