
If ${}^n{P_7} = 42\left( {{}^n{P_5}} \right)$, then find $n$
Answer
624.6k+ views
Hint- Here, we will be using the general formula for permutations.
Given, ${}^n{P_7} = 42\left( {{}^n{P_5}} \right){\text{ }} \to {\text{(1)}}$
Since, we know that the general formula for permutation is given by
Number of ways of arranging $r$ items out of $n$ items is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Solving the given equation (1) using above formula, we get
$
\dfrac{{n!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 42n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \\
\Rightarrow \left( {n - 5} \right)\left( {n - 6} \right) = 42 \Rightarrow {n^2} - 11n + 30 = 42 \Rightarrow {n^2} - 11n - 12 = 0 \\
\Rightarrow {n^2} + n - 12n - 12 = 0 \Rightarrow n\left( {n + 1} \right) - 12\left( {n + 1} \right) = 0 \Rightarrow \left( {n + 1} \right)\left( {n - 12} \right) = 0 \\
\\
$
Either $n = - 1$ or $n = 12$
Since, the value of $n$ should always be positive so we will neglect $n = - 1$.
Therefore, the possible value of $n$ is 12.
Note- In these types of problems we have to check at the end that the values of $n$ we are getting are non-negative. If any value of $n$ comes out to be negative, then that value is not considered because that value is not feasible.
Given, ${}^n{P_7} = 42\left( {{}^n{P_5}} \right){\text{ }} \to {\text{(1)}}$
Since, we know that the general formula for permutation is given by
Number of ways of arranging $r$ items out of $n$ items is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Solving the given equation (1) using above formula, we get
$
\dfrac{{n!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 42n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \\
\Rightarrow \left( {n - 5} \right)\left( {n - 6} \right) = 42 \Rightarrow {n^2} - 11n + 30 = 42 \Rightarrow {n^2} - 11n - 12 = 0 \\
\Rightarrow {n^2} + n - 12n - 12 = 0 \Rightarrow n\left( {n + 1} \right) - 12\left( {n + 1} \right) = 0 \Rightarrow \left( {n + 1} \right)\left( {n - 12} \right) = 0 \\
\\
$
Either $n = - 1$ or $n = 12$
Since, the value of $n$ should always be positive so we will neglect $n = - 1$.
Therefore, the possible value of $n$ is 12.
Note- In these types of problems we have to check at the end that the values of $n$ we are getting are non-negative. If any value of $n$ comes out to be negative, then that value is not considered because that value is not feasible.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

