If ${}^n{P_7} = 42\left( {{}^n{P_5}} \right)$, then find $n$
Answer
387.6k+ views
Hint- Here, we will be using the general formula for permutations.
Given, ${}^n{P_7} = 42\left( {{}^n{P_5}} \right){\text{ }} \to {\text{(1)}}$
Since, we know that the general formula for permutation is given by
Number of ways of arranging $r$ items out of $n$ items is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Solving the given equation (1) using above formula, we get
$
\dfrac{{n!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 42n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \\
\Rightarrow \left( {n - 5} \right)\left( {n - 6} \right) = 42 \Rightarrow {n^2} - 11n + 30 = 42 \Rightarrow {n^2} - 11n - 12 = 0 \\
\Rightarrow {n^2} + n - 12n - 12 = 0 \Rightarrow n\left( {n + 1} \right) - 12\left( {n + 1} \right) = 0 \Rightarrow \left( {n + 1} \right)\left( {n - 12} \right) = 0 \\
\\
$
Either $n = - 1$ or $n = 12$
Since, the value of $n$ should always be positive so we will neglect $n = - 1$.
Therefore, the possible value of $n$ is 12.
Note- In these types of problems we have to check at the end that the values of $n$ we are getting are non-negative. If any value of $n$ comes out to be negative, then that value is not considered because that value is not feasible.
Given, ${}^n{P_7} = 42\left( {{}^n{P_5}} \right){\text{ }} \to {\text{(1)}}$
Since, we know that the general formula for permutation is given by
Number of ways of arranging $r$ items out of $n$ items is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Solving the given equation (1) using above formula, we get
$
\dfrac{{n!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 42n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \\
\Rightarrow \left( {n - 5} \right)\left( {n - 6} \right) = 42 \Rightarrow {n^2} - 11n + 30 = 42 \Rightarrow {n^2} - 11n - 12 = 0 \\
\Rightarrow {n^2} + n - 12n - 12 = 0 \Rightarrow n\left( {n + 1} \right) - 12\left( {n + 1} \right) = 0 \Rightarrow \left( {n + 1} \right)\left( {n - 12} \right) = 0 \\
\\
$
Either $n = - 1$ or $n = 12$
Since, the value of $n$ should always be positive so we will neglect $n = - 1$.
Therefore, the possible value of $n$ is 12.
Note- In these types of problems we have to check at the end that the values of $n$ we are getting are non-negative. If any value of $n$ comes out to be negative, then that value is not considered because that value is not feasible.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
