
If ${}^n{P_7} = 42\left( {{}^n{P_5}} \right)$, then find $n$
Answer
609.3k+ views
Hint- Here, we will be using the general formula for permutations.
Given, ${}^n{P_7} = 42\left( {{}^n{P_5}} \right){\text{ }} \to {\text{(1)}}$
Since, we know that the general formula for permutation is given by
Number of ways of arranging $r$ items out of $n$ items is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Solving the given equation (1) using above formula, we get
$
\dfrac{{n!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 42n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \\
\Rightarrow \left( {n - 5} \right)\left( {n - 6} \right) = 42 \Rightarrow {n^2} - 11n + 30 = 42 \Rightarrow {n^2} - 11n - 12 = 0 \\
\Rightarrow {n^2} + n - 12n - 12 = 0 \Rightarrow n\left( {n + 1} \right) - 12\left( {n + 1} \right) = 0 \Rightarrow \left( {n + 1} \right)\left( {n - 12} \right) = 0 \\
\\
$
Either $n = - 1$ or $n = 12$
Since, the value of $n$ should always be positive so we will neglect $n = - 1$.
Therefore, the possible value of $n$ is 12.
Note- In these types of problems we have to check at the end that the values of $n$ we are getting are non-negative. If any value of $n$ comes out to be negative, then that value is not considered because that value is not feasible.
Given, ${}^n{P_7} = 42\left( {{}^n{P_5}} \right){\text{ }} \to {\text{(1)}}$
Since, we know that the general formula for permutation is given by
Number of ways of arranging $r$ items out of $n$ items is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Solving the given equation (1) using above formula, we get
$
\dfrac{{n!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right)\left( {n - 7} \right)!}}{{\left( {n - 7} \right)!}} = 42\left[ {\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{\left( {n - 5} \right)!}}} \right] \\
\Rightarrow n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)\left( {n - 6} \right) = 42n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) \\
\Rightarrow \left( {n - 5} \right)\left( {n - 6} \right) = 42 \Rightarrow {n^2} - 11n + 30 = 42 \Rightarrow {n^2} - 11n - 12 = 0 \\
\Rightarrow {n^2} + n - 12n - 12 = 0 \Rightarrow n\left( {n + 1} \right) - 12\left( {n + 1} \right) = 0 \Rightarrow \left( {n + 1} \right)\left( {n - 12} \right) = 0 \\
\\
$
Either $n = - 1$ or $n = 12$
Since, the value of $n$ should always be positive so we will neglect $n = - 1$.
Therefore, the possible value of $n$ is 12.
Note- In these types of problems we have to check at the end that the values of $n$ we are getting are non-negative. If any value of $n$ comes out to be negative, then that value is not considered because that value is not feasible.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

