
If $n\left( A \right)$ denotes the number of elements in set A and if $n\left( A \right) = 4$,$n\left( B \right) = 5$ and $n\left( {A \cap B} \right) = 3$, then $n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = $
A) $8$
B) $9$
C) $10$
D) $11$
Answer
406.5k+ views
Hint: In order to find the value of $n\left( {A \times B} \right) \cap n\left( {B \times A} \right)$ expand the equation using the distributive property, then using the commutative law, solve and substitute the values needed and get the results. There is no need to use $n\left( A \right) = 4$,$n\left( B \right) = 5$ in solving the question.
Formula used:
Distributive Property: $A\left( {B + C} \right) = AB + AC$.
Commutative Law: \[a + b = b + a\]
Complete step by step answer:
We are given the values $n\left( A \right) = 4$,$n\left( B \right) = 5$ and $n\left( {A \cap B} \right) = 3$.
We need to find the value of $n\left( {A \times B} \right) \cap n\left( {B \times A} \right)$.
From Distributive property, we can expand the equation as:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {A \cap A} \right) \times n\left( {B \cap A} \right) \times n\left( {B \cap B} \right)\] …..(1)
Since, there are two values such as \[n\left( {A \cap A} \right)\] and \[n\left( {B \cap B} \right)\] which means A is intersected to A and will give the result as 1, because there will be all same elements.
Therefore, \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\]
Substituting the values \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\] in the equation 1, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times 1 \times n\left( {B \cap A} \right) \times 1\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {B \cap A} \right)\] ………..(2)
From the Commutative property, we know that \[a + b = b + a\], using this property, we can write as:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right)\]
Since, we were given $n\left( {A \cap B} \right) = 3$, that implies:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right) = 3\]
Substituting these values in the equation 2, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 3 \times 3\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 9\]
Therefore, the value of \[n\left( {A \times B} \right) \cap n\left( {B \times A} \right)\] is equal to \[9\].
Hence, Option (B) is correct.
Note:
Since, there is no use of $n\left( A \right) = 4$ and $n\left( B \right) = 5$ while solving the above equation, so do not get confused, and do not substitute their values in the middle if not needed.
The letter n outside the brackets of the sets like n(A) and n(B) represents the number of elements in set A or number of elements in set B.
Formula used:
Distributive Property: $A\left( {B + C} \right) = AB + AC$.
Commutative Law: \[a + b = b + a\]
Complete step by step answer:
We are given the values $n\left( A \right) = 4$,$n\left( B \right) = 5$ and $n\left( {A \cap B} \right) = 3$.
We need to find the value of $n\left( {A \times B} \right) \cap n\left( {B \times A} \right)$.
From Distributive property, we can expand the equation as:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {A \cap A} \right) \times n\left( {B \cap A} \right) \times n\left( {B \cap B} \right)\] …..(1)
Since, there are two values such as \[n\left( {A \cap A} \right)\] and \[n\left( {B \cap B} \right)\] which means A is intersected to A and will give the result as 1, because there will be all same elements.
Therefore, \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\]
Substituting the values \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\] in the equation 1, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times 1 \times n\left( {B \cap A} \right) \times 1\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {B \cap A} \right)\] ………..(2)
From the Commutative property, we know that \[a + b = b + a\], using this property, we can write as:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right)\]
Since, we were given $n\left( {A \cap B} \right) = 3$, that implies:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right) = 3\]
Substituting these values in the equation 2, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 3 \times 3\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 9\]
Therefore, the value of \[n\left( {A \times B} \right) \cap n\left( {B \times A} \right)\] is equal to \[9\].
Hence, Option (B) is correct.
Note:
Since, there is no use of $n\left( A \right) = 4$ and $n\left( B \right) = 5$ while solving the above equation, so do not get confused, and do not substitute their values in the middle if not needed.
The letter n outside the brackets of the sets like n(A) and n(B) represents the number of elements in set A or number of elements in set B.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
