
If $n\left( A \right)$ denotes the number of elements in set A and if $n\left( A \right) = 4$,$n\left( B \right) = 5$ and $n\left( {A \cap B} \right) = 3$, then $n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = $
A) $8$
B) $9$
C) $10$
D) $11$
Answer
487.8k+ views
Hint: In order to find the value of $n\left( {A \times B} \right) \cap n\left( {B \times A} \right)$ expand the equation using the distributive property, then using the commutative law, solve and substitute the values needed and get the results. There is no need to use $n\left( A \right) = 4$,$n\left( B \right) = 5$ in solving the question.
Formula used:
Distributive Property: $A\left( {B + C} \right) = AB + AC$.
Commutative Law: \[a + b = b + a\]
Complete step by step answer:
We are given the values $n\left( A \right) = 4$,$n\left( B \right) = 5$ and $n\left( {A \cap B} \right) = 3$.
We need to find the value of $n\left( {A \times B} \right) \cap n\left( {B \times A} \right)$.
From Distributive property, we can expand the equation as:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {A \cap A} \right) \times n\left( {B \cap A} \right) \times n\left( {B \cap B} \right)\] …..(1)
Since, there are two values such as \[n\left( {A \cap A} \right)\] and \[n\left( {B \cap B} \right)\] which means A is intersected to A and will give the result as 1, because there will be all same elements.
Therefore, \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\]
Substituting the values \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\] in the equation 1, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times 1 \times n\left( {B \cap A} \right) \times 1\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {B \cap A} \right)\] ………..(2)
From the Commutative property, we know that \[a + b = b + a\], using this property, we can write as:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right)\]
Since, we were given $n\left( {A \cap B} \right) = 3$, that implies:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right) = 3\]
Substituting these values in the equation 2, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 3 \times 3\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 9\]
Therefore, the value of \[n\left( {A \times B} \right) \cap n\left( {B \times A} \right)\] is equal to \[9\].
Hence, Option (B) is correct.
Note:
Since, there is no use of $n\left( A \right) = 4$ and $n\left( B \right) = 5$ while solving the above equation, so do not get confused, and do not substitute their values in the middle if not needed.
The letter n outside the brackets of the sets like n(A) and n(B) represents the number of elements in set A or number of elements in set B.
Formula used:
Distributive Property: $A\left( {B + C} \right) = AB + AC$.
Commutative Law: \[a + b = b + a\]
Complete step by step answer:
We are given the values $n\left( A \right) = 4$,$n\left( B \right) = 5$ and $n\left( {A \cap B} \right) = 3$.
We need to find the value of $n\left( {A \times B} \right) \cap n\left( {B \times A} \right)$.
From Distributive property, we can expand the equation as:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {A \cap A} \right) \times n\left( {B \cap A} \right) \times n\left( {B \cap B} \right)\] …..(1)
Since, there are two values such as \[n\left( {A \cap A} \right)\] and \[n\left( {B \cap B} \right)\] which means A is intersected to A and will give the result as 1, because there will be all same elements.
Therefore, \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\]
Substituting the values \[n\left( {A \cap A} \right) = 1\] and \[n\left( {B \cap B} \right) = 1\] in the equation 1, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times 1 \times n\left( {B \cap A} \right) \times 1\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = n\left( {A \cap B} \right) \times n\left( {B \cap A} \right)\] ………..(2)
From the Commutative property, we know that \[a + b = b + a\], using this property, we can write as:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right)\]
Since, we were given $n\left( {A \cap B} \right) = 3$, that implies:
\[n\left( {A \cap B} \right) = n\left( {B \cap A} \right) = 3\]
Substituting these values in the equation 2, we get:
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 3 \times 3\]
\[ \Rightarrow n\left( {A \times B} \right) \cap n\left( {B \times A} \right) = 9\]
Therefore, the value of \[n\left( {A \times B} \right) \cap n\left( {B \times A} \right)\] is equal to \[9\].
Hence, Option (B) is correct.
Note:
Since, there is no use of $n\left( A \right) = 4$ and $n\left( B \right) = 5$ while solving the above equation, so do not get confused, and do not substitute their values in the middle if not needed.
The letter n outside the brackets of the sets like n(A) and n(B) represents the number of elements in set A or number of elements in set B.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

