
If ${}^n{C_{r - 1}} = 10,{}^n{C_r} = 45$ and ${}^n{C_{r + 1}} = 120$ then $r$ equals
A. $1$
B. $2$
C. $3$
D. $4$
Answer
512.1k+ views
Hint: In this problem, we will use the properties of combination. We will use the property $\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}} = \dfrac{{n - r + 1}}{r}$ of combination. After using this property, we will get two equations in two variables. We will solve these two equations by a simple elimination method.
Complete step by step solution
In this problem, it is given that
${}^n{C_{r - 1}} = 10 \cdots \cdots \left( 1 \right)$
${}^n{C_r} = 45 \cdots \cdots \left( 2 \right)$
${}^n{C_{r + 1}} = 120 \cdots \cdots \left( 3 \right)$
Now we are going to use the property of combination which is given by $\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}} = \dfrac{{n - r + 1}}{r} \cdots \cdots \left( 4 \right)$.
Now we are going to substitute values from equation $\left( 1 \right)$ and $\left( 2 \right)$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{45}}{{10}} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow \dfrac{9}{2} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow 9r = 2\left( {n - r + 1} \right) \\
\Rightarrow 9r = 2n - 2r + 2 \\
\Rightarrow 9r + 2r - 2n = 2 \\
\Rightarrow 11r - 2n = 2 \cdots \cdots \left( 5 \right) \\
$
Let us replace $r$ by $r + 1$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_{r + 1 - 1}}}} = \dfrac{{n - \left( {r + 1} \right) + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r - 1 + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r}}{{r + 1}} \cdots \cdots \left( 6 \right) \\
$
Now we are going to substitute values from equation $\left( 2 \right)$ and $\left( 3 \right)$ in equation $\left( 6 \right)$. Therefore, we get
$
\dfrac{{120}}{{45}} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow \dfrac{8}{3} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow 8\left( {r + 1} \right) = 3\left( {n - r} \right) \\
\Rightarrow 8r + 8 = 3n - 3r \\
\Rightarrow 8r + 3r - 3n = - 8 \\
\Rightarrow 11r - 3n = - 8 \cdots \cdots \left( 7 \right) \\
$
Now we have two equations in two variables $n$ and $r$. To find the value of $r$, we will eliminate $n$ from the equations $\left( 5 \right)$ and $\left( 7 \right)$. For this, we will multiply by number $3$ on both sides of equation $\left( 5 \right)$ and also multiply by number $2$ on both sides of equation $\left( 7 \right)$. Therefore, we get
$
33r - 6n = 6 \cdots \cdots \left( 8 \right) \\
22r - 6n = - 16 \cdots \cdots \left( 9 \right) \\
$
Now we will subtract equation $\left( 9 \right)$ from equation $\left( 8 \right)$. Therefore, we get
$
\left( {33r - 6n} \right) - \left( {22r - 6n} \right) = 6 - \left( { - 16} \right) \\
\Rightarrow 33r - 6n - 22r + 6n = 6 + 16 \\
\Rightarrow 11r = 22 \\
\Rightarrow r = \dfrac{{22}}{{11}} \\
\Rightarrow r = 2 \\
$
Therefore, option B is correct.
Note:When solving these type of problems,make use of the appropriate property/formula of combination in accordance with the result which has to be found out/proved
Complete step by step solution
In this problem, it is given that
${}^n{C_{r - 1}} = 10 \cdots \cdots \left( 1 \right)$
${}^n{C_r} = 45 \cdots \cdots \left( 2 \right)$
${}^n{C_{r + 1}} = 120 \cdots \cdots \left( 3 \right)$
Now we are going to use the property of combination which is given by $\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}} = \dfrac{{n - r + 1}}{r} \cdots \cdots \left( 4 \right)$.
Now we are going to substitute values from equation $\left( 1 \right)$ and $\left( 2 \right)$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{45}}{{10}} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow \dfrac{9}{2} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow 9r = 2\left( {n - r + 1} \right) \\
\Rightarrow 9r = 2n - 2r + 2 \\
\Rightarrow 9r + 2r - 2n = 2 \\
\Rightarrow 11r - 2n = 2 \cdots \cdots \left( 5 \right) \\
$
Let us replace $r$ by $r + 1$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_{r + 1 - 1}}}} = \dfrac{{n - \left( {r + 1} \right) + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r - 1 + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r}}{{r + 1}} \cdots \cdots \left( 6 \right) \\
$
Now we are going to substitute values from equation $\left( 2 \right)$ and $\left( 3 \right)$ in equation $\left( 6 \right)$. Therefore, we get
$
\dfrac{{120}}{{45}} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow \dfrac{8}{3} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow 8\left( {r + 1} \right) = 3\left( {n - r} \right) \\
\Rightarrow 8r + 8 = 3n - 3r \\
\Rightarrow 8r + 3r - 3n = - 8 \\
\Rightarrow 11r - 3n = - 8 \cdots \cdots \left( 7 \right) \\
$
Now we have two equations in two variables $n$ and $r$. To find the value of $r$, we will eliminate $n$ from the equations $\left( 5 \right)$ and $\left( 7 \right)$. For this, we will multiply by number $3$ on both sides of equation $\left( 5 \right)$ and also multiply by number $2$ on both sides of equation $\left( 7 \right)$. Therefore, we get
$
33r - 6n = 6 \cdots \cdots \left( 8 \right) \\
22r - 6n = - 16 \cdots \cdots \left( 9 \right) \\
$
Now we will subtract equation $\left( 9 \right)$ from equation $\left( 8 \right)$. Therefore, we get
$
\left( {33r - 6n} \right) - \left( {22r - 6n} \right) = 6 - \left( { - 16} \right) \\
\Rightarrow 33r - 6n - 22r + 6n = 6 + 16 \\
\Rightarrow 11r = 22 \\
\Rightarrow r = \dfrac{{22}}{{11}} \\
\Rightarrow r = 2 \\
$
Therefore, option B is correct.
Note:When solving these type of problems,make use of the appropriate property/formula of combination in accordance with the result which has to be found out/proved
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
