
If ${}^n{C_{r - 1}} = 10,{}^n{C_r} = 45$ and ${}^n{C_{r + 1}} = 120$ then $r$ equals
A. $1$
B. $2$
C. $3$
D. $4$
Answer
591.3k+ views
Hint: In this problem, we will use the properties of combination. We will use the property $\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}} = \dfrac{{n - r + 1}}{r}$ of combination. After using this property, we will get two equations in two variables. We will solve these two equations by a simple elimination method.
Complete step by step solution
In this problem, it is given that
${}^n{C_{r - 1}} = 10 \cdots \cdots \left( 1 \right)$
${}^n{C_r} = 45 \cdots \cdots \left( 2 \right)$
${}^n{C_{r + 1}} = 120 \cdots \cdots \left( 3 \right)$
Now we are going to use the property of combination which is given by $\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}} = \dfrac{{n - r + 1}}{r} \cdots \cdots \left( 4 \right)$.
Now we are going to substitute values from equation $\left( 1 \right)$ and $\left( 2 \right)$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{45}}{{10}} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow \dfrac{9}{2} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow 9r = 2\left( {n - r + 1} \right) \\
\Rightarrow 9r = 2n - 2r + 2 \\
\Rightarrow 9r + 2r - 2n = 2 \\
\Rightarrow 11r - 2n = 2 \cdots \cdots \left( 5 \right) \\
$
Let us replace $r$ by $r + 1$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_{r + 1 - 1}}}} = \dfrac{{n - \left( {r + 1} \right) + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r - 1 + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r}}{{r + 1}} \cdots \cdots \left( 6 \right) \\
$
Now we are going to substitute values from equation $\left( 2 \right)$ and $\left( 3 \right)$ in equation $\left( 6 \right)$. Therefore, we get
$
\dfrac{{120}}{{45}} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow \dfrac{8}{3} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow 8\left( {r + 1} \right) = 3\left( {n - r} \right) \\
\Rightarrow 8r + 8 = 3n - 3r \\
\Rightarrow 8r + 3r - 3n = - 8 \\
\Rightarrow 11r - 3n = - 8 \cdots \cdots \left( 7 \right) \\
$
Now we have two equations in two variables $n$ and $r$. To find the value of $r$, we will eliminate $n$ from the equations $\left( 5 \right)$ and $\left( 7 \right)$. For this, we will multiply by number $3$ on both sides of equation $\left( 5 \right)$ and also multiply by number $2$ on both sides of equation $\left( 7 \right)$. Therefore, we get
$
33r - 6n = 6 \cdots \cdots \left( 8 \right) \\
22r - 6n = - 16 \cdots \cdots \left( 9 \right) \\
$
Now we will subtract equation $\left( 9 \right)$ from equation $\left( 8 \right)$. Therefore, we get
$
\left( {33r - 6n} \right) - \left( {22r - 6n} \right) = 6 - \left( { - 16} \right) \\
\Rightarrow 33r - 6n - 22r + 6n = 6 + 16 \\
\Rightarrow 11r = 22 \\
\Rightarrow r = \dfrac{{22}}{{11}} \\
\Rightarrow r = 2 \\
$
Therefore, option B is correct.
Note:When solving these type of problems,make use of the appropriate property/formula of combination in accordance with the result which has to be found out/proved
Complete step by step solution
In this problem, it is given that
${}^n{C_{r - 1}} = 10 \cdots \cdots \left( 1 \right)$
${}^n{C_r} = 45 \cdots \cdots \left( 2 \right)$
${}^n{C_{r + 1}} = 120 \cdots \cdots \left( 3 \right)$
Now we are going to use the property of combination which is given by $\dfrac{{{}^n{C_r}}}{{{}^n{C_{r - 1}}}} = \dfrac{{n - r + 1}}{r} \cdots \cdots \left( 4 \right)$.
Now we are going to substitute values from equation $\left( 1 \right)$ and $\left( 2 \right)$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{45}}{{10}} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow \dfrac{9}{2} = \dfrac{{n - r + 1}}{r} \\
\Rightarrow 9r = 2\left( {n - r + 1} \right) \\
\Rightarrow 9r = 2n - 2r + 2 \\
\Rightarrow 9r + 2r - 2n = 2 \\
\Rightarrow 11r - 2n = 2 \cdots \cdots \left( 5 \right) \\
$
Let us replace $r$ by $r + 1$ in equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_{r + 1 - 1}}}} = \dfrac{{n - \left( {r + 1} \right) + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r - 1 + 1}}{{r + 1}} \\
\Rightarrow \dfrac{{{}^n{C_{r + 1}}}}{{{}^n{C_r}}} = \dfrac{{n - r}}{{r + 1}} \cdots \cdots \left( 6 \right) \\
$
Now we are going to substitute values from equation $\left( 2 \right)$ and $\left( 3 \right)$ in equation $\left( 6 \right)$. Therefore, we get
$
\dfrac{{120}}{{45}} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow \dfrac{8}{3} = \dfrac{{n - r}}{{r + 1}} \\
\Rightarrow 8\left( {r + 1} \right) = 3\left( {n - r} \right) \\
\Rightarrow 8r + 8 = 3n - 3r \\
\Rightarrow 8r + 3r - 3n = - 8 \\
\Rightarrow 11r - 3n = - 8 \cdots \cdots \left( 7 \right) \\
$
Now we have two equations in two variables $n$ and $r$. To find the value of $r$, we will eliminate $n$ from the equations $\left( 5 \right)$ and $\left( 7 \right)$. For this, we will multiply by number $3$ on both sides of equation $\left( 5 \right)$ and also multiply by number $2$ on both sides of equation $\left( 7 \right)$. Therefore, we get
$
33r - 6n = 6 \cdots \cdots \left( 8 \right) \\
22r - 6n = - 16 \cdots \cdots \left( 9 \right) \\
$
Now we will subtract equation $\left( 9 \right)$ from equation $\left( 8 \right)$. Therefore, we get
$
\left( {33r - 6n} \right) - \left( {22r - 6n} \right) = 6 - \left( { - 16} \right) \\
\Rightarrow 33r - 6n - 22r + 6n = 6 + 16 \\
\Rightarrow 11r = 22 \\
\Rightarrow r = \dfrac{{22}}{{11}} \\
\Rightarrow r = 2 \\
$
Therefore, option B is correct.
Note:When solving these type of problems,make use of the appropriate property/formula of combination in accordance with the result which has to be found out/proved
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

