
If \[{}^n{C_{n - r}} + 3{}^n{C_{n - r + 1}} + 3{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r}\] then prove that \[p = n + 3\].
Answer
600.3k+ views
Hint: First of all, split the terms and group the common suitable terms to use the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\] and reduce the terms. Continue this method until we get the last simplification. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
The given expression is \[{}^n{C_{n - r}} + 3{}^n{C_{n - r + 1}} + 3{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r}\]
\[
{}^n{C_{n - r}} + {}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{n - r + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{n - r + 2}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}}} \right) = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{\left( {n - r} \right) + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
We know that \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
\[
\left( {{}^{n + 1}{C_{n - r + 1}}} \right) + 2\left( {{}^{n + 1}{C_{n - r + 2}}} \right) + \left( {{}^{n + 1}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
By using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], again we have
\[
\left( {{}^{n + 2}{C_{n - r + 2}}} \right) + \left( {{}^{n + 2}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 2}{C_{n - r + 2}} + {}^{n + 2}{C_{\left( {n - r + 2} \right) + 1}} = {}^p{C_r} \\
\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], we get
\[{}^{n + 3}{C_{n - r + 3}} = {}^p{C_r}\]
We know that \[{}^n{C_r} = {}^n{C_{n - r}}\]
\[
{}^{n + 3}{C_{\left( {n + 3} \right) - \left( {n - r + 3} \right)}} = {}^p{C_r} \\
{}^{n + 3}{C_r} = {}^p{C_r} \\
n + 3 = p{\text{ }}\left[ {\because {\text{If }}{}^n{C_r} = {}^p{C_r}{\text{ then }}n = p} \right] \\
\therefore p = n + 3 \\
\]
Hence proved.
Note: In combinations, if \[{}^n{C_r} = {}^p{C_r}{\text{ }}\] then \[n = p\]. In these types of questions use the binomial theorem formulae of combinations to split and simplify terms as per our requirement to reach the solution and hence to prove it.
Complete step-by-step answer:
The given expression is \[{}^n{C_{n - r}} + 3{}^n{C_{n - r + 1}} + 3{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r}\]
\[
{}^n{C_{n - r}} + {}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{n - r + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{n - r + 2}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}}} \right) = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{\left( {n - r} \right) + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
We know that \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
\[
\left( {{}^{n + 1}{C_{n - r + 1}}} \right) + 2\left( {{}^{n + 1}{C_{n - r + 2}}} \right) + \left( {{}^{n + 1}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
By using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], again we have
\[
\left( {{}^{n + 2}{C_{n - r + 2}}} \right) + \left( {{}^{n + 2}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 2}{C_{n - r + 2}} + {}^{n + 2}{C_{\left( {n - r + 2} \right) + 1}} = {}^p{C_r} \\
\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], we get
\[{}^{n + 3}{C_{n - r + 3}} = {}^p{C_r}\]
We know that \[{}^n{C_r} = {}^n{C_{n - r}}\]
\[
{}^{n + 3}{C_{\left( {n + 3} \right) - \left( {n - r + 3} \right)}} = {}^p{C_r} \\
{}^{n + 3}{C_r} = {}^p{C_r} \\
n + 3 = p{\text{ }}\left[ {\because {\text{If }}{}^n{C_r} = {}^p{C_r}{\text{ then }}n = p} \right] \\
\therefore p = n + 3 \\
\]
Hence proved.
Note: In combinations, if \[{}^n{C_r} = {}^p{C_r}{\text{ }}\] then \[n = p\]. In these types of questions use the binomial theorem formulae of combinations to split and simplify terms as per our requirement to reach the solution and hence to prove it.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

