
If \[{}^n{C_{n - r}} + 3{}^n{C_{n - r + 1}} + 3{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r}\] then prove that \[p = n + 3\].
Answer
614.1k+ views
Hint: First of all, split the terms and group the common suitable terms to use the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\] and reduce the terms. Continue this method until we get the last simplification. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
The given expression is \[{}^n{C_{n - r}} + 3{}^n{C_{n - r + 1}} + 3{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r}\]
\[
{}^n{C_{n - r}} + {}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{n - r + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{n - r + 2}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}}} \right) = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{\left( {n - r} \right) + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
We know that \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
\[
\left( {{}^{n + 1}{C_{n - r + 1}}} \right) + 2\left( {{}^{n + 1}{C_{n - r + 2}}} \right) + \left( {{}^{n + 1}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
By using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], again we have
\[
\left( {{}^{n + 2}{C_{n - r + 2}}} \right) + \left( {{}^{n + 2}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 2}{C_{n - r + 2}} + {}^{n + 2}{C_{\left( {n - r + 2} \right) + 1}} = {}^p{C_r} \\
\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], we get
\[{}^{n + 3}{C_{n - r + 3}} = {}^p{C_r}\]
We know that \[{}^n{C_r} = {}^n{C_{n - r}}\]
\[
{}^{n + 3}{C_{\left( {n + 3} \right) - \left( {n - r + 3} \right)}} = {}^p{C_r} \\
{}^{n + 3}{C_r} = {}^p{C_r} \\
n + 3 = p{\text{ }}\left[ {\because {\text{If }}{}^n{C_r} = {}^p{C_r}{\text{ then }}n = p} \right] \\
\therefore p = n + 3 \\
\]
Hence proved.
Note: In combinations, if \[{}^n{C_r} = {}^p{C_r}{\text{ }}\] then \[n = p\]. In these types of questions use the binomial theorem formulae of combinations to split and simplify terms as per our requirement to reach the solution and hence to prove it.
Complete step-by-step answer:
The given expression is \[{}^n{C_{n - r}} + 3{}^n{C_{n - r + 1}} + 3{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r}\]
\[
{}^n{C_{n - r}} + {}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 1}} + 2{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{n - r + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{n - r + 2}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{n - r + 3}}} \right) = {}^p{C_r} \\
\left( {{}^n{C_{n - r}} + {}^n{C_{\left( {n - r} \right) + 1}}} \right) + 2\left( {{}^n{C_{n - r + 1}} + {}^n{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^n{C_{n - r + 2}} + {}^n{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
We know that \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\]
\[
\left( {{}^{n + 1}{C_{n - r + 1}}} \right) + 2\left( {{}^{n + 1}{C_{n - r + 2}}} \right) + \left( {{}^{n + 1}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{n - r + 3}} = {}^p{C_r} \\
\left( {{}^{n + 1}{C_{n - r + 1}} + {}^{n + 1}{C_{\left( {n - r + 1} \right) + 1}}} \right) + \left( {{}^{n + 1}{C_{n - r + 2}} + {}^{n + 1}{C_{\left( {n - r + 2} \right) + 1}}} \right) = {}^p{C_r} \\
\]
By using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], again we have
\[
\left( {{}^{n + 2}{C_{n - r + 2}}} \right) + \left( {{}^{n + 2}{C_{n - r + 3}}} \right) = {}^p{C_r} \\
{}^{n + 2}{C_{n - r + 2}} + {}^{n + 2}{C_{\left( {n - r + 2} \right) + 1}} = {}^p{C_r} \\
\]
Again, using the formula \[{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}\], we get
\[{}^{n + 3}{C_{n - r + 3}} = {}^p{C_r}\]
We know that \[{}^n{C_r} = {}^n{C_{n - r}}\]
\[
{}^{n + 3}{C_{\left( {n + 3} \right) - \left( {n - r + 3} \right)}} = {}^p{C_r} \\
{}^{n + 3}{C_r} = {}^p{C_r} \\
n + 3 = p{\text{ }}\left[ {\because {\text{If }}{}^n{C_r} = {}^p{C_r}{\text{ then }}n = p} \right] \\
\therefore p = n + 3 \\
\]
Hence proved.
Note: In combinations, if \[{}^n{C_r} = {}^p{C_r}{\text{ }}\] then \[n = p\]. In these types of questions use the binomial theorem formulae of combinations to split and simplify terms as per our requirement to reach the solution and hence to prove it.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

