
If \[n{ = ^m}{C_2}\] then the value of \[^n{C_2}\] is given by
A. \[^{m + 1}{C_4}\]
B. \[^{m - 1}{C_4}\]
C. \[^{m + 2}{C_4}\]
D. \[{3.^{m + 1}}{C_4}\]
Answer
550.8k+ views
Hint: We use the formula of combinations and expand the given term according to the formula. Write the value of n in terms of m. Similarly open the value of the required combination using the formula and substitute the value of n obtained from the previous combination formula.
* Formula of combination is given by\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
Step-By-Step answer:
We are given that \[n{ = ^m}{C_2}\]
Use the combination formula to open the value of n
\[ \Rightarrow n = \dfrac{{m!}}{{(m - 2)!2!}}\]
Now we can expand the numerator using factorial formula
\[ \Rightarrow n = \dfrac{{m(m - 1)(m - 2)!}}{{(m - 2)!2!}}\]
Cancel same factors from numerator and denominator of the fraction
\[ \Rightarrow n = \dfrac{{m(m - 1)}}{{2!}}\]
Also we know \[2! = 2\]
\[ \Rightarrow n = \dfrac{{m(m - 1)}}{2}\] … (1)
Now we have to calculate the value of \[^n{C_2}\]
Use the combination formula to open the value
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n!}}{{(n - 2)!2!}}\]
Now we can expand the numerator using factorial formula
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n(n - 1)(n - 2)!}}{{(n - 2)!2!}}\]
Cancel same factors from numerator and denominator of the fraction
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n(n - 1)}}{{2!}}\]
Also we know \[2! = 2\]
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n(n - 1)}}{2}\] … (2)
Substitute the value of ‘n’ from equation (1) in equation (2)
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {\dfrac{{m(m - 1)}}{2}} \right\}\left\{ {\dfrac{{m(m - 1)}}{2} - 1} \right\}}}{2}\]
Take LCM in the numerator of the fraction
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {\dfrac{{m(m - 1)}}{2}} \right\}\left\{ {\dfrac{{m(m - 1) - 2}}{2}} \right\}}}{2}\]
Write the fraction in simpler form
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {m(m - 1) - 2)} \right\}}}{{2 \times 2 \times 2}}\]
Calculate the second bracket
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {{m^2} - m - 2)} \right\}}}{{2 \times 2 \times 2}}\]
Factorize the quadratic equation in second bracket
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {{m^2} - 2m + m - 2)} \right\}}}{{2 \times 2 \times 2}}\]
Collect the factors in second bracket
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {m(m - 2) + 1(m - 2)} \right\}}}{{2 \times 2 \times 2}}\]
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {(m - 2)(m + 1)} \right\}}}{{2 \times 2 \times 2}}\]
Write the numerator of the fraction in descending order of terms
\[{ \Rightarrow ^n}{C_2} = \dfrac{{(m + 1)(m)(m - 1)(m - 2)}}{{4 \times 2}}\]
Multiply both numerator and denominator by 3
\[{ \Rightarrow ^n}{C_2} = \dfrac{{3(m + 1)(m)(m - 1)(m - 2)}}{{4 \times 3 \times 2 \times 1}}\]
Now we can write the denominator using factorial formula
\[{ \Rightarrow ^n}{C_2} = \dfrac{{3(m + 1)(m)(m - 1)(m - 2)}}{{4!}}\] … (3)
Also, since there are 4 terms in the numerator, we can write \[^{m + 1}{C_4}\] as we know first multiple is \[m + 1\]
We know \[^{m + 1}{C_4} = \dfrac{{(m + 1)!}}{{(m + 1 - 4)!4!}}\] and on expansion we get \[{ \Rightarrow ^{m + 1}}{C_4} = \dfrac{{(m + 1)(m)(m - 1)(m - 2)(m - 3)!}}{{(m - 3)!4!}}\]. Cancel same factors and we get \[{ \Rightarrow ^{m + 1}}{C_4} = \dfrac{{3(m + 1)(m)(m - 1)(m - 2)}}{{4!}}\]
Substitute value of \[^{m + 1}{C_4}\] in RHS of equation (3)
\[{ \Rightarrow ^n}{C_2} = {3^{m + 1}}{C_4}\]
\[\therefore \]Option D is correct.
Note: Many students get confused when the terms in the numerator start from \[m + 1\] instead of m, keep in mind the term from which the expansion starts is the superscript in the combination representation. Also open the factorial one by one to avoid confusion in calculation.
* Formula of combination is given by\[^n{C_r} = \dfrac{{n!}}{{(n - r)!r!}}\], where factorial is expanded by the formula \[n! = n \times (n - 1)! = n \times (n - 1) \times (n - 2)!.... = n \times (n - 1) \times (n - 2)....3 \times 2 \times 1\]
Step-By-Step answer:
We are given that \[n{ = ^m}{C_2}\]
Use the combination formula to open the value of n
\[ \Rightarrow n = \dfrac{{m!}}{{(m - 2)!2!}}\]
Now we can expand the numerator using factorial formula
\[ \Rightarrow n = \dfrac{{m(m - 1)(m - 2)!}}{{(m - 2)!2!}}\]
Cancel same factors from numerator and denominator of the fraction
\[ \Rightarrow n = \dfrac{{m(m - 1)}}{{2!}}\]
Also we know \[2! = 2\]
\[ \Rightarrow n = \dfrac{{m(m - 1)}}{2}\] … (1)
Now we have to calculate the value of \[^n{C_2}\]
Use the combination formula to open the value
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n!}}{{(n - 2)!2!}}\]
Now we can expand the numerator using factorial formula
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n(n - 1)(n - 2)!}}{{(n - 2)!2!}}\]
Cancel same factors from numerator and denominator of the fraction
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n(n - 1)}}{{2!}}\]
Also we know \[2! = 2\]
\[{ \Rightarrow ^n}{C_2} = \dfrac{{n(n - 1)}}{2}\] … (2)
Substitute the value of ‘n’ from equation (1) in equation (2)
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {\dfrac{{m(m - 1)}}{2}} \right\}\left\{ {\dfrac{{m(m - 1)}}{2} - 1} \right\}}}{2}\]
Take LCM in the numerator of the fraction
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {\dfrac{{m(m - 1)}}{2}} \right\}\left\{ {\dfrac{{m(m - 1) - 2}}{2}} \right\}}}{2}\]
Write the fraction in simpler form
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {m(m - 1) - 2)} \right\}}}{{2 \times 2 \times 2}}\]
Calculate the second bracket
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {{m^2} - m - 2)} \right\}}}{{2 \times 2 \times 2}}\]
Factorize the quadratic equation in second bracket
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {{m^2} - 2m + m - 2)} \right\}}}{{2 \times 2 \times 2}}\]
Collect the factors in second bracket
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {m(m - 2) + 1(m - 2)} \right\}}}{{2 \times 2 \times 2}}\]
\[{ \Rightarrow ^n}{C_2} = \dfrac{{\left\{ {(m)(m - 1)} \right\}\left\{ {(m - 2)(m + 1)} \right\}}}{{2 \times 2 \times 2}}\]
Write the numerator of the fraction in descending order of terms
\[{ \Rightarrow ^n}{C_2} = \dfrac{{(m + 1)(m)(m - 1)(m - 2)}}{{4 \times 2}}\]
Multiply both numerator and denominator by 3
\[{ \Rightarrow ^n}{C_2} = \dfrac{{3(m + 1)(m)(m - 1)(m - 2)}}{{4 \times 3 \times 2 \times 1}}\]
Now we can write the denominator using factorial formula
\[{ \Rightarrow ^n}{C_2} = \dfrac{{3(m + 1)(m)(m - 1)(m - 2)}}{{4!}}\] … (3)
Also, since there are 4 terms in the numerator, we can write \[^{m + 1}{C_4}\] as we know first multiple is \[m + 1\]
We know \[^{m + 1}{C_4} = \dfrac{{(m + 1)!}}{{(m + 1 - 4)!4!}}\] and on expansion we get \[{ \Rightarrow ^{m + 1}}{C_4} = \dfrac{{(m + 1)(m)(m - 1)(m - 2)(m - 3)!}}{{(m - 3)!4!}}\]. Cancel same factors and we get \[{ \Rightarrow ^{m + 1}}{C_4} = \dfrac{{3(m + 1)(m)(m - 1)(m - 2)}}{{4!}}\]
Substitute value of \[^{m + 1}{C_4}\] in RHS of equation (3)
\[{ \Rightarrow ^n}{C_2} = {3^{m + 1}}{C_4}\]
\[\therefore \]Option D is correct.
Note: Many students get confused when the terms in the numerator start from \[m + 1\] instead of m, keep in mind the term from which the expansion starts is the superscript in the combination representation. Also open the factorial one by one to avoid confusion in calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

