
If n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = $
A) a
B) 0
C) ${a^2}$
D) ${2^n}$
Answer
563.7k+ views
Hint:
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Firstly, expand the given series using the formula \[\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\] .
Then, solve the series further to get the required answer.
Complete step by step solution:
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
First, take the given equation:
$a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Now, we can write above sequence as
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\]
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .a - \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\]
\[ = a\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\] (where \[r = 0\] , we get 0)
Now, using formula \[\left( {{}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right){\left( {1 + x} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^r}\] when \[x = - 1\] \[ \Rightarrow {\left( {1 - 1} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( { - 1} \right)^r}\]
\[ = a{\left( {1 - 1} \right)^n} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} .r\]
\[ = a\left( 0 \right) - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}n.{}^{n - 1}{C_{r - 1}}} \]
\[ = 0 - n\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^{n - 1}{C_{r - 1}}} \]
\[ = - n\left[ { - {}^{n - 1}{C_o} + {}^{n - 1}{C_1} - {}^{n - 1}{C_2}.............{{\left( 1 \right)}^{n - 1}}{}^{n - 1}{C_{n - 1}}} \right]\]
$ = - n\left( 0 \right) \\
=0$
Therefore, if n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = 0$.
Note:
Combination: A combination is a selection of items from a collection, such that the order of selection does not matter.
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ .
Permutation: permutation means arranging all the members of a set into some sequence or order.
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Firstly, expand the given series using the formula \[\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\] .
Then, solve the series further to get the required answer.
Complete step by step solution:
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
First, take the given equation:
$a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Now, we can write above sequence as
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\]
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .a - \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\]
\[ = a\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\] (where \[r = 0\] , we get 0)
Now, using formula \[\left( {{}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right){\left( {1 + x} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^r}\] when \[x = - 1\] \[ \Rightarrow {\left( {1 - 1} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( { - 1} \right)^r}\]
\[ = a{\left( {1 - 1} \right)^n} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} .r\]
\[ = a\left( 0 \right) - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}n.{}^{n - 1}{C_{r - 1}}} \]
\[ = 0 - n\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^{n - 1}{C_{r - 1}}} \]
\[ = - n\left[ { - {}^{n - 1}{C_o} + {}^{n - 1}{C_1} - {}^{n - 1}{C_2}.............{{\left( 1 \right)}^{n - 1}}{}^{n - 1}{C_{n - 1}}} \right]\]
$ = - n\left( 0 \right) \\
=0$
Therefore, if n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = 0$.
Note:
Combination: A combination is a selection of items from a collection, such that the order of selection does not matter.
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ .
Permutation: permutation means arranging all the members of a set into some sequence or order.
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

