
If n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = $
A) a
B) 0
C) ${a^2}$
D) ${2^n}$
Answer
480.6k+ views
Hint:
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Firstly, expand the given series using the formula \[\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\] .
Then, solve the series further to get the required answer.
Complete step by step solution:
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
First, take the given equation:
$a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Now, we can write above sequence as
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\]
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .a - \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\]
\[ = a\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\] (where \[r = 0\] , we get 0)
Now, using formula \[\left( {{}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right){\left( {1 + x} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^r}\] when \[x = - 1\] \[ \Rightarrow {\left( {1 - 1} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( { - 1} \right)^r}\]
\[ = a{\left( {1 - 1} \right)^n} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} .r\]
\[ = a\left( 0 \right) - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}n.{}^{n - 1}{C_{r - 1}}} \]
\[ = 0 - n\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^{n - 1}{C_{r - 1}}} \]
\[ = - n\left[ { - {}^{n - 1}{C_o} + {}^{n - 1}{C_1} - {}^{n - 1}{C_2}.............{{\left( 1 \right)}^{n - 1}}{}^{n - 1}{C_{n - 1}}} \right]\]
$ = - n\left( 0 \right) \\
=0$
Therefore, if n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = 0$.
Note:
Combination: A combination is a selection of items from a collection, such that the order of selection does not matter.
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ .
Permutation: permutation means arranging all the members of a set into some sequence or order.
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Firstly, expand the given series using the formula \[\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\] .
Then, solve the series further to get the required answer.
Complete step by step solution:
It is given in the question that n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
First, take the given equation:
$a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right)$
Now, we can write above sequence as
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} \left( {a - r} \right)\]
\[ = \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .a - \sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\]
\[ = a\sum\limits_{r = 0}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^n{C_r}} .r\] (where \[r = 0\] , we get 0)
Now, using formula \[\left( {{}^n{C_r} = \dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} \right){\left( {1 + x} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {x^r}\] when \[x = - 1\] \[ \Rightarrow {\left( {1 - 1} \right)^n} = \sum\limits_{r = 0}^n {{}^n{C_r}} {\left( { - 1} \right)^r}\]
\[ = a{\left( {1 - 1} \right)^n} - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}.\dfrac{n}{r}{}^{n - 1}{C_{r - 1}}} .r\]
\[ = a\left( 0 \right) - \sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}n.{}^{n - 1}{C_{r - 1}}} \]
\[ = 0 - n\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^r}{}^{n - 1}{C_{r - 1}}} \]
\[ = - n\left[ { - {}^{n - 1}{C_o} + {}^{n - 1}{C_1} - {}^{n - 1}{C_2}.............{{\left( 1 \right)}^{n - 1}}{}^{n - 1}{C_{n - 1}}} \right]\]
$ = - n\left( 0 \right) \\
=0$
Therefore, if n is an integer greater than 1, then $a - {}^n{c_1}\left( {a - 1} \right) + {}^n{c_2}\left( {a - 2} \right) - ....... + {\left( { - 1} \right)^n}\left( {a - n} \right) = 0$.
Note:
Combination: A combination is a selection of items from a collection, such that the order of selection does not matter.
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ .
Permutation: permutation means arranging all the members of a set into some sequence or order.
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Why do you think did the narrator call lie Amsterdam class 11 english CBSE

Tentacles of Hydra are A Hollow B Solid C Half hollow class 11 biology CBSE

What do you mean by public facilities
