
If \[matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]then find \[{A^{ - 1}}\]and prove that:
(i) \[{A^{ - 1}}A = I_3\]
(ii) \[{A^{ - 1}} = F( - \alpha )\]
(iii) \[A.\left( {adjA} \right){\text{ }} = {\text{ }}\left| A \right|I{\text{ }} = {\text{ }}\left( {adj{\text{ }}A} \right).A\]
Answer
582.9k+ views
Hint:- We will first find the modulus of A then we will find the minors and cofactors and then put them into the formula for \[{A^{ - 1}}\].
For (i) we will multiply the matrices \[{A^{ - 1}}\] and \[A\] and then prove it equal to RHS.
For (ii) we will replace \[\alpha \] by \[ - \alpha \] in the given matrix and then prove it equal to \[{A^{ - 1}}\].
For (iii) we will first pre multiply \[A\] with \[adjA\] and prove it equal to modulus of \[A\] and then we will post multiply \[A\] with \[adjA\] and prove it equal to modulus of \[A\].
Complete step-by-step answer:
We are given:
\[matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]
Calculating the modulus of A we get:
Expanding along row 1 we get:
\[
|A| = \cos \alpha \left[ {\left( 1 \right)\left( {\cos \alpha } \right) - 0} \right] - \sin \alpha \left[ {\left( 1 \right)\left( { - \sin \alpha } \right) - 0} \right] + 0 \\
|A| = \cos \alpha \left[ {\cos \alpha } \right] + \sin \alpha \left[ {\sin \alpha } \right] \\
|A| = {\cos ^2}\alpha + {\sin ^2}\alpha \\
\]
Now since we know that:
\[{\cos ^2}\alpha + {\sin ^2}\alpha = 1\]
Hence,
\[|A| = 1\]
Now we will calculate the cofactors:
\[
F11 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F12 = - \left| {\begin{array}{*{20}{c}}
{\sin \alpha }&0 \\
0&1
\end{array}} \right| = - \sin \alpha \\
F13 = + \left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha } \\
0&0
\end{array}} \right| = 0 \\
F21 = - \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
0&1
\end{array}} \right| = \sin \alpha \\
F22 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F23 = - \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
0&0
\end{array}} \right| = 0 \\
F31 = + \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&0
\end{array}} \right| = 0 \\
F32 = - \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&0 \\
{\sin \alpha }&0
\end{array}} \right| = 0 \\
F33 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right| = 1 \\
\]
Now we will write the matrix formed by the adjoint of A.
\[B = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]
Therefore,
\[
adjA = {B^T} = {\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)^T} \\
adjA = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
\]
Now we know that:
\[{A^{ - 1}} = \dfrac{{adjA}}{{|A|}}\]
Putting the values we get:
\[
{A^{ - 1}} = \dfrac{1}{1}\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
\]
(i) Considering LHS we get:
\[LHS = {A^{ - 1}}A\]
Solving the LHS we get:
\[
LHS = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = I_3 \\
\]
Hence LHS=RHS therefore verified.
(ii) The matrix is given by:
\[{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]
Replacing \[\alpha \] by \[ - \alpha \]in the given matrix A we get:
\[
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \left( { - \alpha } \right)}&{ - \sin \left( { - \alpha } \right)}&0 \\
{\sin \left( { - \alpha } \right)}&{\cos \left( { - \alpha } \right)}&0 \\
0&0&1
\end{array}} \right) \\
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) = {A^{ - 1}} \\
\]
Hence verified.
(iii) Considering the LHS we get:-
\[LHS = A.adjA\]
Calculating the LHS we get:
\[
LHS = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 1 \right) \\
\]
Now considering RHS we get:-
\[RHS = adjA.A\]
Calculating the RHS we get:-
\[
RHS = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
RHS = \left( {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
RHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
RHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 2 \right) \\
\]
Hence from equation 1 and equation2 the third statement is proved.
Note: The inverse of matrix exist if and only if \[|A| \ne 0\]. The inverse of a matrix A is given by: \[{A^{ - 1}} = \dfrac{{adjA}}{{|A|}}\]
For (i) we will multiply the matrices \[{A^{ - 1}}\] and \[A\] and then prove it equal to RHS.
For (ii) we will replace \[\alpha \] by \[ - \alpha \] in the given matrix and then prove it equal to \[{A^{ - 1}}\].
For (iii) we will first pre multiply \[A\] with \[adjA\] and prove it equal to modulus of \[A\] and then we will post multiply \[A\] with \[adjA\] and prove it equal to modulus of \[A\].
Complete step-by-step answer:
We are given:
\[matrix{\text{ }}A{\text{ }} = {\text{ }}F\left( \alpha \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]
Calculating the modulus of A we get:
Expanding along row 1 we get:
\[
|A| = \cos \alpha \left[ {\left( 1 \right)\left( {\cos \alpha } \right) - 0} \right] - \sin \alpha \left[ {\left( 1 \right)\left( { - \sin \alpha } \right) - 0} \right] + 0 \\
|A| = \cos \alpha \left[ {\cos \alpha } \right] + \sin \alpha \left[ {\sin \alpha } \right] \\
|A| = {\cos ^2}\alpha + {\sin ^2}\alpha \\
\]
Now since we know that:
\[{\cos ^2}\alpha + {\sin ^2}\alpha = 1\]
Hence,
\[|A| = 1\]
Now we will calculate the cofactors:
\[
F11 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F12 = - \left| {\begin{array}{*{20}{c}}
{\sin \alpha }&0 \\
0&1
\end{array}} \right| = - \sin \alpha \\
F13 = + \left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha } \\
0&0
\end{array}} \right| = 0 \\
F21 = - \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
0&1
\end{array}} \right| = \sin \alpha \\
F22 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&0 \\
0&1
\end{array}} \right| = \cos \alpha \\
F23 = - \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
0&0
\end{array}} \right| = 0 \\
F31 = + \left| {\begin{array}{*{20}{c}}
{ - \sin \alpha }&0 \\
{\cos \alpha }&0
\end{array}} \right| = 0 \\
F32 = - \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&0 \\
{\sin \alpha }&0
\end{array}} \right| = 0 \\
F33 = + \left| {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha } \\
{\sin \alpha }&{\cos \alpha }
\end{array}} \right| = 1 \\
\]
Now we will write the matrix formed by the adjoint of A.
\[B = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]
Therefore,
\[
adjA = {B^T} = {\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)^T} \\
adjA = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
\]
Now we know that:
\[{A^{ - 1}} = \dfrac{{adjA}}{{|A|}}\]
Putting the values we get:
\[
{A^{ - 1}} = \dfrac{1}{1}\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
\]
(i) Considering LHS we get:
\[LHS = {A^{ - 1}}A\]
Solving the LHS we get:
\[
LHS = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = I_3 \\
\]
Hence LHS=RHS therefore verified.
(ii) The matrix is given by:
\[{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\]
Replacing \[\alpha \] by \[ - \alpha \]in the given matrix A we get:
\[
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \left( { - \alpha } \right)}&{ - \sin \left( { - \alpha } \right)}&0 \\
{\sin \left( { - \alpha } \right)}&{\cos \left( { - \alpha } \right)}&0 \\
0&0&1
\end{array}} \right) \\
F\left( { - \alpha } \right){\text{ }} = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) = {A^{ - 1}} \\
\]
Hence verified.
(iii) Considering the LHS we get:-
\[LHS = A.adjA\]
Calculating the LHS we get:
\[
LHS = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{\cos \alpha \sin \alpha - \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
LHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 1 \right) \\
\]
Now considering RHS we get:-
\[RHS = adjA.A\]
Calculating the RHS we get:-
\[
RHS = \left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{\sin \alpha }&0 \\
{ - \sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{\cos \alpha }&{ - \sin \alpha }&0 \\
{\sin \alpha }&{\cos \alpha }&0 \\
0&0&1
\end{array}} \right) \\
RHS = \left( {\begin{array}{*{20}{c}}
{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{0 + 0 + 0} \\
{ - \cos \alpha \sin \alpha + \cos \alpha \sin \alpha + 0}&{{{\cos }^2}\alpha + {{\sin }^2}\alpha + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 1}
\end{array}} \right) \\
RHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = 1 \times I \\
RHS = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = |A|I....................\left( 2 \right) \\
\]
Hence from equation 1 and equation2 the third statement is proved.
Note: The inverse of matrix exist if and only if \[|A| \ne 0\]. The inverse of a matrix A is given by: \[{A^{ - 1}} = \dfrac{{adjA}}{{|A|}}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

