
If ${{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 9{{x}^{2}}-6x+1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$, the value of x is:
(a)$9-\sqrt{15}$
(b)$3+\sqrt{15}$
(c)$2+\sqrt{15}$
(d)$6-\sqrt{5}$
Answer
615.9k+ views
Hint: Use the following formulas to simplify the expression and to get the value of x.
${{\log }_{a}}x=\dfrac{{{\log }_{c}}x}{{{\log }_{c}}a},\text{ }{{\log }_{a}}\left( {{x}^{n}} \right)=n{{\log }_{a}}x,\text{ }{{\log }_{a}}x={{\log }_{b}}y\Rightarrow x=y$.
Complete step-by-step answer:
Let us take the given expression first. As we need to find out the value of x, we will try to remove log from the given expression.
${{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 9{{x}^{2}}-6x+1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
We will apply the formula: ${{\log }_{a}}x=\dfrac{{{\log }_{c}}x}{{{\log }_{c}}a}$
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{{{\log }_{10}}\left( 3x-1 \right)}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{{{\log }_{10}}\left( 9{{x}^{2}}-6x+1 \right)}$, by taking 10 as base.
We know that, $9{{x}^{2}}-6x+1={{\left( 3x-1 \right)}^{2}}$. Therefore,
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{{{\log }_{10}}\left( 3x-1 \right)}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{{{\log }_{10}}{{\left( 3x-1 \right)}^{2}}}$
Now we will apply the formula: ${{\log }_{a}}\left( {{x}^{n}} \right)=n{{\log }_{a}}x$
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{{{\log }_{10}}\left( 3x-1 \right)}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{2{{\log }_{10}}\left( 3x-1 \right)}$
We can cancel out ${{\log }_{10}}\left( 3x-1 \right)$ from both the denominators.
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{1}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{2}$
By cross multiplying we have,
$\Rightarrow 2{{\log }_{10}}\left( x-2 \right)={{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)$
Again we will apply the formula: ${{\log }_{a}}\left( {{x}^{n}} \right)=n{{\log }_{a}}x$
$\Rightarrow {{\log }_{10}}{{\left( x-2 \right)}^{2}}={{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)$
Now we will apply, ${{\log }_{a}}x={{\log }_{b}}y\Rightarrow x=y$
$\Rightarrow {{\left( x-2 \right)}^{2}}=3{{x}^{2}}-10x-2$
$\Rightarrow {{x}^{2}}-4x+4=2{{x}^{2}}-10x-2$
We will take all the non zero terms on the left hand side.
$\Rightarrow 2{{x}^{2}}-{{x}^{2}}-10x+4x-2-4=0$
$\Rightarrow {{x}^{2}}-6x-6=0$
Now, we will apply the Sridharacharya formula to solve the above quadratic equation. That is:
$a{{x}^{2}}+bx+c=0\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here a = 1, b = -6, c = -6. Therefore,
$\Rightarrow x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2\times 1}$
$\Rightarrow x=\dfrac{6\pm \sqrt{36+24}}{2}$
$\Rightarrow x=\dfrac{6\pm \sqrt{60}}{2}$
$\Rightarrow x=\dfrac{6\pm \sqrt{4\times 15}}{2}$
$\Rightarrow x=\dfrac{6\pm 2\sqrt{15}}{2}$
$\Rightarrow x=\dfrac{6}{2}\pm \dfrac{2\sqrt{15}}{2}$
$\Rightarrow x=3\pm \sqrt{15}$
Therefore,
$x=3+\sqrt{15},\text{ }x=3-\sqrt{15}$
Hence, option (b) is correct.
Note: Alternatively we can apply the formula: ${{\log }_{{{a}^{n}}}}x=\dfrac{1}{n}{{\log }_{a}}x$ on the given expression.
${{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 9{{x}^{2}}-6x+1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
$\Rightarrow {{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{{{\left( 3x-1 \right)}^{2}}}}\left( 2{{x}^{2}}-10x-2 \right)$
$\Rightarrow {{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)=\dfrac{1}{2}{{\log }_{\left( 3x-1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
$\Rightarrow 2{{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 3x-1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
Like this we can solve and get the value of x.
${{\log }_{a}}x=\dfrac{{{\log }_{c}}x}{{{\log }_{c}}a},\text{ }{{\log }_{a}}\left( {{x}^{n}} \right)=n{{\log }_{a}}x,\text{ }{{\log }_{a}}x={{\log }_{b}}y\Rightarrow x=y$.
Complete step-by-step answer:
Let us take the given expression first. As we need to find out the value of x, we will try to remove log from the given expression.
${{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 9{{x}^{2}}-6x+1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
We will apply the formula: ${{\log }_{a}}x=\dfrac{{{\log }_{c}}x}{{{\log }_{c}}a}$
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{{{\log }_{10}}\left( 3x-1 \right)}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{{{\log }_{10}}\left( 9{{x}^{2}}-6x+1 \right)}$, by taking 10 as base.
We know that, $9{{x}^{2}}-6x+1={{\left( 3x-1 \right)}^{2}}$. Therefore,
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{{{\log }_{10}}\left( 3x-1 \right)}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{{{\log }_{10}}{{\left( 3x-1 \right)}^{2}}}$
Now we will apply the formula: ${{\log }_{a}}\left( {{x}^{n}} \right)=n{{\log }_{a}}x$
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{{{\log }_{10}}\left( 3x-1 \right)}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{2{{\log }_{10}}\left( 3x-1 \right)}$
We can cancel out ${{\log }_{10}}\left( 3x-1 \right)$ from both the denominators.
$\Rightarrow \dfrac{{{\log }_{10}}\left( x-2 \right)}{1}=\dfrac{{{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)}{2}$
By cross multiplying we have,
$\Rightarrow 2{{\log }_{10}}\left( x-2 \right)={{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)$
Again we will apply the formula: ${{\log }_{a}}\left( {{x}^{n}} \right)=n{{\log }_{a}}x$
$\Rightarrow {{\log }_{10}}{{\left( x-2 \right)}^{2}}={{\log }_{10}}\left( 2{{x}^{2}}-10x-2 \right)$
Now we will apply, ${{\log }_{a}}x={{\log }_{b}}y\Rightarrow x=y$
$\Rightarrow {{\left( x-2 \right)}^{2}}=3{{x}^{2}}-10x-2$
$\Rightarrow {{x}^{2}}-4x+4=2{{x}^{2}}-10x-2$
We will take all the non zero terms on the left hand side.
$\Rightarrow 2{{x}^{2}}-{{x}^{2}}-10x+4x-2-4=0$
$\Rightarrow {{x}^{2}}-6x-6=0$
Now, we will apply the Sridharacharya formula to solve the above quadratic equation. That is:
$a{{x}^{2}}+bx+c=0\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here a = 1, b = -6, c = -6. Therefore,
$\Rightarrow x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2\times 1}$
$\Rightarrow x=\dfrac{6\pm \sqrt{36+24}}{2}$
$\Rightarrow x=\dfrac{6\pm \sqrt{60}}{2}$
$\Rightarrow x=\dfrac{6\pm \sqrt{4\times 15}}{2}$
$\Rightarrow x=\dfrac{6\pm 2\sqrt{15}}{2}$
$\Rightarrow x=\dfrac{6}{2}\pm \dfrac{2\sqrt{15}}{2}$
$\Rightarrow x=3\pm \sqrt{15}$
Therefore,
$x=3+\sqrt{15},\text{ }x=3-\sqrt{15}$
Hence, option (b) is correct.
Note: Alternatively we can apply the formula: ${{\log }_{{{a}^{n}}}}x=\dfrac{1}{n}{{\log }_{a}}x$ on the given expression.
${{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 9{{x}^{2}}-6x+1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
$\Rightarrow {{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{{{\left( 3x-1 \right)}^{2}}}}\left( 2{{x}^{2}}-10x-2 \right)$
$\Rightarrow {{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)=\dfrac{1}{2}{{\log }_{\left( 3x-1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
$\Rightarrow 2{{\log }_{\left( 3x-1 \right)}}\left( x-2 \right)={{\log }_{\left( 3x-1 \right)}}\left( 2{{x}^{2}}-10x-2 \right)$
Like this we can solve and get the value of x.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

