
If \[{\log _3}5 = x\]and \[{\log _{25}}11 = y\], then the value of \[{\log _3}\left( {\dfrac{{11}}{3}} \right)\] in terms of \[x\] and \[y\] is
Answer
580.5k+ views
Hint: Here, we will use the logarithm properties like, \[{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a\] , \[{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}\] and \[{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b\] to rewrite the given conditions in order to find the required value.
Complete step-by-step answer:
We are given that the \[{\log _3}5 = x\] and \[{\log _{25}}11 = y\].
We will now rewrite the expression \[{\log _{25}}11 = y\], we get
\[ \Rightarrow {\log _{{5^2}}}11 = y\]
Using the logarithm property, \[{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a\] in the above expression, we get
\[ \Rightarrow \dfrac{1}{2}{\log _5}11 = y\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 2\left( {\dfrac{1}{2}{{\log }_5}11} \right) = 2y \\
\Rightarrow {\log _5}11 = 2y \\
\]
Let us now make use of the property of logarithm, \[{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}\].
So, on applying this property in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{{{{\log }_3}5}} = 2y\]
Substituting the value of \[{\log _3}5\] in the above expression, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{x} = 2y\]
Multiplying the above equation by \[x\] on both sides, we get
\[
\Rightarrow x\left( {\dfrac{{{{\log }_3}11}}{x}} \right) = 2xy \\
\Rightarrow {\log _3}11 = 2xy \\
\]
Rewriting the expression \[{\log _3}\dfrac{{11}}{3}\] using the logarithm property, \[{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b\], we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3\]
Substituting the values of \[{\log _3}11\] and \[{\log _3}3\] in the above expression, we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1\]
Thus, the value of \[{\log _3}\dfrac{{11}}{3}\] is \[2xy - 1\].
Note: The logarithm rules can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Complete step-by-step answer:
We are given that the \[{\log _3}5 = x\] and \[{\log _{25}}11 = y\].
We will now rewrite the expression \[{\log _{25}}11 = y\], we get
\[ \Rightarrow {\log _{{5^2}}}11 = y\]
Using the logarithm property, \[{\log _{{b^2}}}a = \dfrac{1}{2}{\log _b}a\] in the above expression, we get
\[ \Rightarrow \dfrac{1}{2}{\log _5}11 = y\]
Multiplying the above equation by 2 on both sides, we get
\[
\Rightarrow 2\left( {\dfrac{1}{2}{{\log }_5}11} \right) = 2y \\
\Rightarrow {\log _5}11 = 2y \\
\]
Let us now make use of the property of logarithm, \[{\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_c}b}}\].
So, on applying this property in the above equation, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{{{{\log }_3}5}} = 2y\]
Substituting the value of \[{\log _3}5\] in the above expression, we get
\[ \Rightarrow \dfrac{{{{\log }_3}11}}{x} = 2y\]
Multiplying the above equation by \[x\] on both sides, we get
\[
\Rightarrow x\left( {\dfrac{{{{\log }_3}11}}{x}} \right) = 2xy \\
\Rightarrow {\log _3}11 = 2xy \\
\]
Rewriting the expression \[{\log _3}\dfrac{{11}}{3}\] using the logarithm property, \[{\log _c}\left( {\dfrac{a}{b}} \right) = {\log _c}a - {\log _c}b\], we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = {\log _3}11 - {\log _3}3\]
Substituting the values of \[{\log _3}11\] and \[{\log _3}3\] in the above expression, we get
\[ \Rightarrow {\log _3}\left( {\dfrac{{11}}{3}} \right) = 2xy - 1\]
Thus, the value of \[{\log _3}\dfrac{{11}}{3}\] is \[2xy - 1\].
Note: The logarithm rules can be used for fast exponent calculation using multiplication operation. Students should make use of the appropriate formula of logarithms wherever needed and solve the problem. In mathematics, if the base value in the logarithm function is not written, then the base is \[e\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

