
If \[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3\] and \[\left| {2\overrightarrow a - \overrightarrow b } \right| = 5\], then \[\left| {2\overrightarrow a + \overrightarrow b } \right|\] equals
(A) 17
(B) 7
(C) 5
(D) 1
Answer
576.9k+ views
Hint: Here first we will use the given quantity i.e. \[\left| {2\overrightarrow a - \overrightarrow b } \right| = 5\] and square both the sides and expand the resultant quantity.
Then put the known values to and find the value of the required quantity.
Complete step-by-step answer:
It is given that:
\[\left| {2\overrightarrow a - \overrightarrow b } \right| = 5\]
Squaring both the sides we get:-
\[{\left( {\left| {2\overrightarrow a - \overrightarrow b } \right|} \right)^2} = {\left( 5 \right)^2}\]
Solving it further we get:-
\[\left| {2\overrightarrow a - \overrightarrow b } \right|.\left| {2\overrightarrow a - \overrightarrow b } \right| = 25\]
Now on multiplying we get:-
\[\left( 2 \right)\left( 2 \right)\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( 1 \right)\left( 1 \right)\left( {{{\left| {\overrightarrow b } \right|}^2}} \right) - 2\left( {\overrightarrow a .\overrightarrow b } \right) - 2\left( {\overrightarrow a .\overrightarrow b } \right) = 25\]
Simplifying it further we get:-
\[4\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( {{{\left| {\overrightarrow b } \right|}^2}} \right) - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25\]
Now it is given that:
\[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3\]
Hence putting in the known values we get:-
\[4{\left( 2 \right)^2} + {\left( 3 \right)^2} - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25\]
Now solving it further we get:-
\[
4\left( 4 \right) + 9 - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 \\
\Rightarrow 16 + 9 - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 \\
\Rightarrow 25 - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 \\
\]
Evaluating the value of \[4\left( {\overrightarrow a .\overrightarrow b } \right)\] we get:-
\[
4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 - 25 \\
4\left( {\overrightarrow a .\overrightarrow b } \right) = 0...............................\left( 1 \right) \\
\]
Now we will evaluate the value of \[\left| {2\overrightarrow a + \overrightarrow b } \right|\].
On squaring the give quantity we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = \left( {2\overrightarrow a + \overrightarrow b } \right).\left( {2\overrightarrow a + \overrightarrow b } \right)\]
Solving it further we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = \left( 2 \right)\left( 2 \right)\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( 1 \right)\left( 1 \right)\left( {{{\left| {\overrightarrow b } \right|}^2}} \right) + 2\left( {\overrightarrow a .\overrightarrow b } \right) + 2\left( {\overrightarrow a .\overrightarrow b } \right)\]
On simplifying we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( {{{\left| {\overrightarrow b } \right|}^2}} \right) + 4\left( {\overrightarrow a .\overrightarrow b } \right)\]
Now it is given that:
\[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3\]
Hence putting in the known values we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4{\left( 2 \right)^2} + {\left( 3 \right)^2} - 4\left( {\overrightarrow a .\overrightarrow b } \right)\]
Now putting the value from equation1 we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4{\left( 2 \right)^2} + {\left( 3 \right)^2} - 0\]
Solving it further we get:-
\[
{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4\left( 4 \right) + 9 \\
\Rightarrow {\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 16 + 9 \\
\Rightarrow {\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 25 \\
\]
Now taking square root of both the sides we get:-
\[\sqrt {{{\left| {2\overrightarrow a + \overrightarrow b } \right|}^2}} = \sqrt {25} \]
Evaluating it further we get:-
\[\left| {2\overrightarrow a + \overrightarrow b } \right| = \pm 5\]
But since we know that the modulus of any quantity is always positive
Hence we will consider the positive value
Therefore,
\[\left| {2\overrightarrow a + \overrightarrow b } \right| = 5\]
Hence option C is the correct option.
Note: Students should keep in mind that modulus of any quantity is always positive and also when we take squares of any vector quantity then they are multiplied with each other using dot product.
Then put the known values to and find the value of the required quantity.
Complete step-by-step answer:
It is given that:
\[\left| {2\overrightarrow a - \overrightarrow b } \right| = 5\]
Squaring both the sides we get:-
\[{\left( {\left| {2\overrightarrow a - \overrightarrow b } \right|} \right)^2} = {\left( 5 \right)^2}\]
Solving it further we get:-
\[\left| {2\overrightarrow a - \overrightarrow b } \right|.\left| {2\overrightarrow a - \overrightarrow b } \right| = 25\]
Now on multiplying we get:-
\[\left( 2 \right)\left( 2 \right)\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( 1 \right)\left( 1 \right)\left( {{{\left| {\overrightarrow b } \right|}^2}} \right) - 2\left( {\overrightarrow a .\overrightarrow b } \right) - 2\left( {\overrightarrow a .\overrightarrow b } \right) = 25\]
Simplifying it further we get:-
\[4\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( {{{\left| {\overrightarrow b } \right|}^2}} \right) - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25\]
Now it is given that:
\[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3\]
Hence putting in the known values we get:-
\[4{\left( 2 \right)^2} + {\left( 3 \right)^2} - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25\]
Now solving it further we get:-
\[
4\left( 4 \right) + 9 - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 \\
\Rightarrow 16 + 9 - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 \\
\Rightarrow 25 - 4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 \\
\]
Evaluating the value of \[4\left( {\overrightarrow a .\overrightarrow b } \right)\] we get:-
\[
4\left( {\overrightarrow a .\overrightarrow b } \right) = 25 - 25 \\
4\left( {\overrightarrow a .\overrightarrow b } \right) = 0...............................\left( 1 \right) \\
\]
Now we will evaluate the value of \[\left| {2\overrightarrow a + \overrightarrow b } \right|\].
On squaring the give quantity we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = \left( {2\overrightarrow a + \overrightarrow b } \right).\left( {2\overrightarrow a + \overrightarrow b } \right)\]
Solving it further we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = \left( 2 \right)\left( 2 \right)\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( 1 \right)\left( 1 \right)\left( {{{\left| {\overrightarrow b } \right|}^2}} \right) + 2\left( {\overrightarrow a .\overrightarrow b } \right) + 2\left( {\overrightarrow a .\overrightarrow b } \right)\]
On simplifying we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4\left( {{{\left| {\overrightarrow a } \right|}^2}} \right) + \left( {{{\left| {\overrightarrow b } \right|}^2}} \right) + 4\left( {\overrightarrow a .\overrightarrow b } \right)\]
Now it is given that:
\[\left| {\overrightarrow a } \right| = 2,\left| {\overrightarrow b } \right| = 3\]
Hence putting in the known values we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4{\left( 2 \right)^2} + {\left( 3 \right)^2} - 4\left( {\overrightarrow a .\overrightarrow b } \right)\]
Now putting the value from equation1 we get:-
\[{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4{\left( 2 \right)^2} + {\left( 3 \right)^2} - 0\]
Solving it further we get:-
\[
{\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 4\left( 4 \right) + 9 \\
\Rightarrow {\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 16 + 9 \\
\Rightarrow {\left| {2\overrightarrow a + \overrightarrow b } \right|^2} = 25 \\
\]
Now taking square root of both the sides we get:-
\[\sqrt {{{\left| {2\overrightarrow a + \overrightarrow b } \right|}^2}} = \sqrt {25} \]
Evaluating it further we get:-
\[\left| {2\overrightarrow a + \overrightarrow b } \right| = \pm 5\]
But since we know that the modulus of any quantity is always positive
Hence we will consider the positive value
Therefore,
\[\left| {2\overrightarrow a + \overrightarrow b } \right| = 5\]
Hence option C is the correct option.
Note: Students should keep in mind that modulus of any quantity is always positive and also when we take squares of any vector quantity then they are multiplied with each other using dot product.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

