
If $ \left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right]={{\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right]}^{-2}} $ , then the value of x is
(a) $ \dfrac{a}{125} $
(b) $ \dfrac{2a}{125} $
(c) $ \dfrac{a}{25} $
(d) None of these
Answer
565.5k+ views
Hint: We start solving the problem by assuming $ A=\left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right] $ . We then multiply $ {{B}^{2}} $ on both sides of the given equation. We then find the $ {{B}^{2}} $ by using the standard rule of matrix multiplication. We then multiply the obtained $ {{B}^{2}} $ with A and equate it to the identity matrix of order 2. We then equate the corresponding elements in both matrices to get the linear equation involving x and a. We then make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are given that $ \left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right]={{\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right]}^{-2}} $ and we need to find the value of x.
Let us assume $ A=\left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right] $ .
So, we have $ A={{B}^{-2}} $ .
$ \Rightarrow A.{{B}^{2}}={{B}^{-2}}.{{B}^{2}} $ .
$ \Rightarrow A.{{B}^{2}}=I $ ---(1), where I is an Identity matrix of order $ 2\times 2 $ .
We know that the identity matrix is defined as a square matrix with all of its principal elements 1 and others as 0.
Now, let us find the matrix $ {{B}^{2}} $ .
So, we have $ {{B}^{2}}=\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right] $ .
$ \Rightarrow {{B}^{2}}=\left[ \begin{matrix}
\left( 5\times 5 \right)+\left( 0\times -a \right) & \left( 5\times 0 \right)+\left( 0\times 5 \right) \\
\left( -a\times 5 \right)+\left( 5\times -a \right) & \left( -a\times 0 \right)+\left( 5\times 5 \right) \\
\end{matrix} \right] $ .
$ \Rightarrow {{B}^{2}}=\left[ \begin{matrix}
25+0 & 0+0 \\
-5a-5a & 0+25 \\
\end{matrix} \right] $ .
$ \Rightarrow {{B}^{2}}=\left[ \begin{matrix}
25 & 0 \\
-10a & 25 \\
\end{matrix} \right] $ . Let us substitute this in equation (1).
$ \Rightarrow \left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right]\left[ \begin{matrix}
25 & 0 \\
-10a & 25 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] $ .
$ \Rightarrow \left[ \begin{matrix}
\left( \dfrac{1}{25}\times 25 \right)+\left( 0\times -10a \right) & \left( \dfrac{1}{25}\times 0 \right)+\left( 0\times 25 \right) \\
\left( x\times 25 \right)+\left( \dfrac{1}{25}\times -10a \right) & \left( x\times 0 \right)+\left( \dfrac{1}{25}\times 25 \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] $ .
\[\Rightarrow \left[ \begin{matrix}
1+0 & 0+0 \\
25x-\dfrac{2a}{5} & 0+1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
\[\Rightarrow \left[ \begin{matrix}
1 & 0 \\
25x-\dfrac{2a}{5} & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\].
Equating the corresponding elements on both sides, we get \[25x-\dfrac{2a}{5}=0\].
$ \Rightarrow 25x=\dfrac{2a}{5} $ .
$ \Rightarrow x=\dfrac{2a}{125} $ .
So, we have found the value of x as $ \dfrac{2a}{125} $ .
$\therefore$ The correct option for the given problem is (b).
Note:
We can also solve this solve by first finding the inverse of the matrix B i.e., $ {{B}^{-1}} $ and then performing the matrix multiplication $ {{B}^{-1}}\times {{B}^{-1}} $ to find the matrix $ {{B}^{-2}} $ . We then equate A to $ {{B}^{-2}} $ for getting the required value of x. We should not solve this problem by assuming $ A={{B}^{-2}}\Leftrightarrow {{A}^{2}}=B $ , which is one of the mistakes done by students. Similarly, we can expect problems to find the matrix $ {{A}^{-1}} $ .
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right] $ . We then multiply $ {{B}^{2}} $ on both sides of the given equation. We then find the $ {{B}^{2}} $ by using the standard rule of matrix multiplication. We then multiply the obtained $ {{B}^{2}} $ with A and equate it to the identity matrix of order 2. We then equate the corresponding elements in both matrices to get the linear equation involving x and a. We then make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are given that $ \left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right]={{\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right]}^{-2}} $ and we need to find the value of x.
Let us assume $ A=\left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right] $ .
So, we have $ A={{B}^{-2}} $ .
$ \Rightarrow A.{{B}^{2}}={{B}^{-2}}.{{B}^{2}} $ .
$ \Rightarrow A.{{B}^{2}}=I $ ---(1), where I is an Identity matrix of order $ 2\times 2 $ .
We know that the identity matrix is defined as a square matrix with all of its principal elements 1 and others as 0.
Now, let us find the matrix $ {{B}^{2}} $ .
So, we have $ {{B}^{2}}=\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
5 & 0 \\
-a & 5 \\
\end{matrix} \right] $ .
$ \Rightarrow {{B}^{2}}=\left[ \begin{matrix}
\left( 5\times 5 \right)+\left( 0\times -a \right) & \left( 5\times 0 \right)+\left( 0\times 5 \right) \\
\left( -a\times 5 \right)+\left( 5\times -a \right) & \left( -a\times 0 \right)+\left( 5\times 5 \right) \\
\end{matrix} \right] $ .
$ \Rightarrow {{B}^{2}}=\left[ \begin{matrix}
25+0 & 0+0 \\
-5a-5a & 0+25 \\
\end{matrix} \right] $ .
$ \Rightarrow {{B}^{2}}=\left[ \begin{matrix}
25 & 0 \\
-10a & 25 \\
\end{matrix} \right] $ . Let us substitute this in equation (1).
$ \Rightarrow \left[ \begin{matrix}
\dfrac{1}{25} & 0 \\
x & \dfrac{1}{25} \\
\end{matrix} \right]\left[ \begin{matrix}
25 & 0 \\
-10a & 25 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] $ .
$ \Rightarrow \left[ \begin{matrix}
\left( \dfrac{1}{25}\times 25 \right)+\left( 0\times -10a \right) & \left( \dfrac{1}{25}\times 0 \right)+\left( 0\times 25 \right) \\
\left( x\times 25 \right)+\left( \dfrac{1}{25}\times -10a \right) & \left( x\times 0 \right)+\left( \dfrac{1}{25}\times 25 \right) \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right] $ .
\[\Rightarrow \left[ \begin{matrix}
1+0 & 0+0 \\
25x-\dfrac{2a}{5} & 0+1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\]
\[\Rightarrow \left[ \begin{matrix}
1 & 0 \\
25x-\dfrac{2a}{5} & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]\].
Equating the corresponding elements on both sides, we get \[25x-\dfrac{2a}{5}=0\].
$ \Rightarrow 25x=\dfrac{2a}{5} $ .
$ \Rightarrow x=\dfrac{2a}{125} $ .
So, we have found the value of x as $ \dfrac{2a}{125} $ .
$\therefore$ The correct option for the given problem is (b).
Note:
We can also solve this solve by first finding the inverse of the matrix B i.e., $ {{B}^{-1}} $ and then performing the matrix multiplication $ {{B}^{-1}}\times {{B}^{-1}} $ to find the matrix $ {{B}^{-2}} $ . We then equate A to $ {{B}^{-2}} $ for getting the required value of x. We should not solve this problem by assuming $ A={{B}^{-2}}\Leftrightarrow {{A}^{2}}=B $ , which is one of the mistakes done by students. Similarly, we can expect problems to find the matrix $ {{A}^{-1}} $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

