
If $\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = {\left( {\begin{array}{*{20}{c}}
5&0 \\
{ - a}&5
\end{array}} \right)^{ - 2}}$, then the value of x is
${\text{A}}{\text{. }}\dfrac{a}{{125}}$
${\text{B}}{\text{. }}\dfrac{{2a}}{{125}}$
${\text{C}}{\text{. }}\dfrac{{2a}}{{25}}$
${\text{D}}{\text{.}}$ None of these
Answer
615.3k+ views
Hint: If a matrix is \[A = \left( {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right)\], then the inverse of the matrix is, ${A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right)$, use this to solve.
Complete step-by-step answer:
We have been given in the question, $\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = {\left( {\begin{array}{*{20}{c}}
5&0 \\
{ - a}&5
\end{array}} \right)^{ - 2}}$,
Now let $A = \left( {\begin{array}{*{20}{c}}
5&0 \\
{ - a}&5
\end{array}} \right)$, so we can find the inverse of the matrix by using the formula,
${A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right)$,
Therefore, $\det A = 25$,
Hence, the inverse is, ${A^{ - 1}} = \dfrac{1}{{25}}\left( {\begin{array}{*{20}{c}}
5&0 \\
a&5
\end{array}} \right)$,
So, the given equation becomes, $\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = {A^{ - 2}} - (1)$
Therefore, ${(A)^{ - 2}} = \dfrac{1}{{625}}{\left( {\begin{array}{*{20}{c}}
5&0 \\
a&5
\end{array}} \right)^2} = \dfrac{1}{{625}}\left( {\begin{array}{*{20}{c}}
{25}&0 \\
{10a}&{25}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
{\dfrac{{2a}}{{125}}}&{\dfrac{1}{{25}}}
\end{array}} \right)$
Now put the value of ${A^{ - 2}}$in equation (1), we get,
$
\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
{\dfrac{{2a}}{{125}}}&{\dfrac{1}{{25}}}
\end{array}} \right) \\
\Rightarrow x = \dfrac{{2a}}{{125}} \\
$
Hence, we get the value of x as 2a/125, after solving the equations.
So, the correct answer is ${\text{B}}{\text{. }}\dfrac{{2a}}{{125}}$.
Note- Whenever such types of questions appear, be careful while finding the inverse of a matrix, use the formula, ${A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right)$, only when the matrix is a $2 \times 2$ matrix. After finding the value of ${A^{ - 2}}$, put in the given equation and solve it to find the value of x.
a&b \\
c&d
\end{array}} \right)\], then the inverse of the matrix is, ${A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right)$, use this to solve.
Complete step-by-step answer:
We have been given in the question, $\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = {\left( {\begin{array}{*{20}{c}}
5&0 \\
{ - a}&5
\end{array}} \right)^{ - 2}}$,
Now let $A = \left( {\begin{array}{*{20}{c}}
5&0 \\
{ - a}&5
\end{array}} \right)$, so we can find the inverse of the matrix by using the formula,
${A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right)$,
Therefore, $\det A = 25$,
Hence, the inverse is, ${A^{ - 1}} = \dfrac{1}{{25}}\left( {\begin{array}{*{20}{c}}
5&0 \\
a&5
\end{array}} \right)$,
So, the given equation becomes, $\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = {A^{ - 2}} - (1)$
Therefore, ${(A)^{ - 2}} = \dfrac{1}{{625}}{\left( {\begin{array}{*{20}{c}}
5&0 \\
a&5
\end{array}} \right)^2} = \dfrac{1}{{625}}\left( {\begin{array}{*{20}{c}}
{25}&0 \\
{10a}&{25}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
{\dfrac{{2a}}{{125}}}&{\dfrac{1}{{25}}}
\end{array}} \right)$
Now put the value of ${A^{ - 2}}$in equation (1), we get,
$
\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\
{\dfrac{{2a}}{{125}}}&{\dfrac{1}{{25}}}
\end{array}} \right) \\
\Rightarrow x = \dfrac{{2a}}{{125}} \\
$
Hence, we get the value of x as 2a/125, after solving the equations.
So, the correct answer is ${\text{B}}{\text{. }}\dfrac{{2a}}{{125}}$.
Note- Whenever such types of questions appear, be careful while finding the inverse of a matrix, use the formula, ${A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\
{ - c}&a
\end{array}} \right)$, only when the matrix is a $2 \times 2$ matrix. After finding the value of ${A^{ - 2}}$, put in the given equation and solve it to find the value of x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

