
If ${{\left( 3x-1 \right)}^{7}}={{a}_{7}}{{x}^{7}}+{{a}_{6}}{{x}^{6}}+\cdots +{{a}_{1}}x+{{a}_{0}}$, then $a_7+a_6+a_5+a_4+...+a_1+a_0$= is equal to
[a] 0
[b] 1
[c] 128
[d] 64
Answer
594.9k+ views
Hint: Use the binomial theorem to expand ${{\left( 3x-1 \right)}^{7}}$ and hence calculate the value of the coefficients and hence calculate the sum of the coefficients.
Complete step-by-step answer:
Observe that we are asked to find the sum of the coefficients in the expansion of ${{\left( 3x-1 \right)}^{7}}$
We know that ${{\left( x+y \right)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}y+\ldots {{+}^{n}}{{C}_{n-1}}x{{y}^{n-1}}{{+}^{n}}{{C}_{n}}{{y}^{n}}$
Replace x by 3x and y by -1 and put n =7, we get
${{\left( 3x-1 \right)}^{7}}{{=}^{7}}{{C}_{0}}{{\left( 3x \right)}^{7}}{{+}^{7}}{{C}_{1}}{{\left( 3x \right)}^{6}}\left( -1 \right)+\cdots {{+}^{7}}{{C}_{6}}\left( 3x \right){{\left( -1 \right)}^{6}}{{+}^{7}}{{C}_{7}}{{\left( -1 \right)}^{7}}$
Now, we have
$^{7}{{C}_{0}}=1$
We know that $\dfrac{^{n}{{C}_{r}}}{^{n}{{C}_{r-1}}}=\dfrac{n-r+1}{r}$
Put n=7 and r = 1, we get
$\dfrac{^{7}{{C}_{1}}}{^{7}{{C}_{0}}}=\dfrac{7-1+1}{1}=7{{\Rightarrow }^{7}}{{C}_{1}}=7\times 1=7$
Put n = 7 and r = 2, we get
$\dfrac{^{7}{{C}_{2}}}{^{7}{{C}_{1}}}=\dfrac{7-2+1}{2}{{\Rightarrow }^{7}}{{C}_{2}}=\dfrac{6}{2}\times 7=21$
Put n = 7 and r = 3, we get
$\dfrac{^{7}{{C}_{3}}}{^{7}{{C}_{2}}}=\dfrac{7-3+1}{3}{{\Rightarrow }^{7}}{{C}_{3}}=\dfrac{5}{3}\times 21=35$
Put n = 7 and r = 4, we get
$\dfrac{^{7}{{C}_{4}}}{^{7}{{C}_{3}}}=\dfrac{7-4+1}{4}{{\Rightarrow }^{7}}{{C}_{4}}=\dfrac{4}{4}\times 35=35$
Put n = 7 and r = 5, we get
$\dfrac{^{7}{{C}_{5}}}{^{7}{{C}_{4}}}=\dfrac{7-5+1}{5}{{\Rightarrow }^{7}}{{C}_{5}}=\dfrac{3}{5}\times 35=21$
Put n = 7 and r = 6, we get
$\dfrac{^{7}{{C}_{6}}}{^{7}{{C}_{5}}}=\dfrac{7-6+1}{6}{{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{6}\times 21=7$
Put n = 7 and r = 7, we get
$\dfrac{^{7}{{C}_{7}}}{^{7}{{C}_{6}}}=\dfrac{7-7+1}{7}{{\Rightarrow }^{7}}{{C}_{7}}=\dfrac{1}{7}\times 7=1$
Hence, we have
${{\left( 3x-1 \right)}^{7}}={{\left( 3x \right)}^{7}}-7{{\left( 3x \right)}^{6}}+21{{\left( 3x \right)}^{5}}-35{{\left( 3x \right)}^{4}}+35{{\left( 3x \right)}^{3}}-21{{\left( 3x \right)}^{2}}+7\left( 3x \right)-1$
Hence, we have
${{\left( 3x-1 \right)}^{7}}=2187{{x}^{7}}-5103{{x}^{6}}+5103{{x}^{5}}-2835{{x}^{4}}+945{{x}^{3}}-189{{x}^{2}}+21x-1$
Hence, we have
$\sum\limits_{r=0}^{7}{{{a}_{r}}}=2187-5103+5103-2835+945-189+21-1=128$
Hence the sum of the coefficients is equal to 128
Hence option [c] is correct.
Note: Alternative solution: Best method:
We have ${{\left( 3x-1 \right)}^{7}}={{a}_{7}}{{x}^{7}}+{{a}_{6}}{{x}^{6}}+\cdots +{{a}_{1}}x+{{a}_{0}}$
Put x = 1, we get
${{\left( 3\times 1-1 \right)}^{7}}={{a}_{7}}{{\left( 1 \right)}^{7}}+{{a}_{6}}{{\left( 1 \right)}^{6}}+\cdots +{{a}_{1}}\left( 1 \right)+{{a}_{0}}$
Hence, we have
${{a}_{7}}+{{a}_{6}}+\cdots +{{a}_{1}}+{{a}_{0}}={{\left( 2 \right)}^{7}}=128$
Hence the sum of the coefficients is equal to 128.
Hence option [c] is correct.
Complete step-by-step answer:
Observe that we are asked to find the sum of the coefficients in the expansion of ${{\left( 3x-1 \right)}^{7}}$
We know that ${{\left( x+y \right)}^{n}}{{=}^{n}}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}y+\ldots {{+}^{n}}{{C}_{n-1}}x{{y}^{n-1}}{{+}^{n}}{{C}_{n}}{{y}^{n}}$
Replace x by 3x and y by -1 and put n =7, we get
${{\left( 3x-1 \right)}^{7}}{{=}^{7}}{{C}_{0}}{{\left( 3x \right)}^{7}}{{+}^{7}}{{C}_{1}}{{\left( 3x \right)}^{6}}\left( -1 \right)+\cdots {{+}^{7}}{{C}_{6}}\left( 3x \right){{\left( -1 \right)}^{6}}{{+}^{7}}{{C}_{7}}{{\left( -1 \right)}^{7}}$
Now, we have
$^{7}{{C}_{0}}=1$
We know that $\dfrac{^{n}{{C}_{r}}}{^{n}{{C}_{r-1}}}=\dfrac{n-r+1}{r}$
Put n=7 and r = 1, we get
$\dfrac{^{7}{{C}_{1}}}{^{7}{{C}_{0}}}=\dfrac{7-1+1}{1}=7{{\Rightarrow }^{7}}{{C}_{1}}=7\times 1=7$
Put n = 7 and r = 2, we get
$\dfrac{^{7}{{C}_{2}}}{^{7}{{C}_{1}}}=\dfrac{7-2+1}{2}{{\Rightarrow }^{7}}{{C}_{2}}=\dfrac{6}{2}\times 7=21$
Put n = 7 and r = 3, we get
$\dfrac{^{7}{{C}_{3}}}{^{7}{{C}_{2}}}=\dfrac{7-3+1}{3}{{\Rightarrow }^{7}}{{C}_{3}}=\dfrac{5}{3}\times 21=35$
Put n = 7 and r = 4, we get
$\dfrac{^{7}{{C}_{4}}}{^{7}{{C}_{3}}}=\dfrac{7-4+1}{4}{{\Rightarrow }^{7}}{{C}_{4}}=\dfrac{4}{4}\times 35=35$
Put n = 7 and r = 5, we get
$\dfrac{^{7}{{C}_{5}}}{^{7}{{C}_{4}}}=\dfrac{7-5+1}{5}{{\Rightarrow }^{7}}{{C}_{5}}=\dfrac{3}{5}\times 35=21$
Put n = 7 and r = 6, we get
$\dfrac{^{7}{{C}_{6}}}{^{7}{{C}_{5}}}=\dfrac{7-6+1}{6}{{\Rightarrow }^{7}}{{C}_{6}}=\dfrac{2}{6}\times 21=7$
Put n = 7 and r = 7, we get
$\dfrac{^{7}{{C}_{7}}}{^{7}{{C}_{6}}}=\dfrac{7-7+1}{7}{{\Rightarrow }^{7}}{{C}_{7}}=\dfrac{1}{7}\times 7=1$
Hence, we have
${{\left( 3x-1 \right)}^{7}}={{\left( 3x \right)}^{7}}-7{{\left( 3x \right)}^{6}}+21{{\left( 3x \right)}^{5}}-35{{\left( 3x \right)}^{4}}+35{{\left( 3x \right)}^{3}}-21{{\left( 3x \right)}^{2}}+7\left( 3x \right)-1$
Hence, we have
${{\left( 3x-1 \right)}^{7}}=2187{{x}^{7}}-5103{{x}^{6}}+5103{{x}^{5}}-2835{{x}^{4}}+945{{x}^{3}}-189{{x}^{2}}+21x-1$
Hence, we have
$\sum\limits_{r=0}^{7}{{{a}_{r}}}=2187-5103+5103-2835+945-189+21-1=128$
Hence the sum of the coefficients is equal to 128
Hence option [c] is correct.
Note: Alternative solution: Best method:
We have ${{\left( 3x-1 \right)}^{7}}={{a}_{7}}{{x}^{7}}+{{a}_{6}}{{x}^{6}}+\cdots +{{a}_{1}}x+{{a}_{0}}$
Put x = 1, we get
${{\left( 3\times 1-1 \right)}^{7}}={{a}_{7}}{{\left( 1 \right)}^{7}}+{{a}_{6}}{{\left( 1 \right)}^{6}}+\cdots +{{a}_{1}}\left( 1 \right)+{{a}_{0}}$
Hence, we have
${{a}_{7}}+{{a}_{6}}+\cdots +{{a}_{1}}+{{a}_{0}}={{\left( 2 \right)}^{7}}=128$
Hence the sum of the coefficients is equal to 128.
Hence option [c] is correct.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

