
If k and n are positive integers and ${{S}_{k}}={{1}^{k}}+{{2}^{k}}+\cdots +{{n}^{k}}$, then $\sum\limits_{r=1}^{m}{^{m}{{C}_{r}}{{S}_{r}}}$ is equal to
$\begin{align}
& \left[ a \right]\ {{\left( n+1 \right)}^{m+1}}-\left( n+1 \right) \\
& [b]\ {{\left( n+1 \right)}^{m+1}}+\left( n+1 \right) \\
& [c]\ {{\left( n-1 \right)}^{m+1}}-\left( n-1 \right) \\
& [d]\ \text{None of these} \\
\end{align}$
Answer
589.5k+ views
Hint: Use the fact that the expansion of binomial ${{\left( 1+x \right)}^{n}}$ is given by ${{\left( 1+x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}+\cdots {{+}^{n}}{{C}_{n}}{{x}^{n}}$. Hence prove that ${{\left( 1+x \right)}^{n}}-{{x}^{n}}-1=\sum\limits_{r=1}^{n-1}{^{n}{{C}_{r}}{{x}^{r}}}$. Replace n by m+1, and put successively x = 1, 2, …,n and add the resulting expressions. Hence express the sum $\sum\limits_{r=1}^{m+1}{^{m+1}{{C}_{r}}{{S}_{r}}}$ in the form of Telescopic series, i.e. series where ${{a}_{n}}=f\left( n \right)-f\left( n-1 \right)$. In a telescopic series, alternate terms cancel out leaving the first and the last term only. Hence find the sum and verify which of the options are correct.
Complete step-by-step solution -
We have ${{S}_{k}}={{1}^{k}}+{{2}^{k}}+\cdots +{{n}^{k}}$
Now, we know that ${{\left( 1+x \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{x}^{r}}}$
Put x =1, we get
${{\left( 1+1 \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{1}^{r}}=1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{1}^{r}}}+{{1}^{m+1}}}$
Put x = 2, we get
$\begin{align}
& {{\left( 1+2 \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{2}^{r}}=1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{2}^{r}}}+{{2}^{m+1}}} \\
& \vdots \ \ \ \ \ \ \ \ \ \ \ =\ \ \ \ \vdots \\
\end{align}$
Put x = n, we get
${{\left( 1+n \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{n}^{r}}=1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{n}^{r}}}+{{n}^{m+1}}}$
Adding these equation, we get
${{2}^{m+1}}+{{3}^{m+1}}+\cdots +{{\left( n+1 \right)}^{m+1}}=\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{1}^{r}}+{{1}^{m+1}}} \right)+\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{2}^{r}}+{{2}^{m+1}}} \right)+\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{2}^{r}}+{{3}^{m+1}}} \right)+\cdots +\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{n}^{r}}+{{n}^{m+1}}} \right)$
Transposing the terms ${{1}^{m+1}},{{2}^{m+1}},\cdots ,{{n}^{m+1}}$ to LHS, we get
$-{{1}^{m+1}}+{{2}^{m+1}}-{{2}^{m+1}}+\cdots +{{n}^{m+1}}-{{n}^{m+1}}+{{\left( n+1 \right)}^{m+1}}=\left( 1+1+\cdots +1 \right)+\sum\limits_{r=1}^{m}{^{n}{{C}_{r}}\left( {{1}^{r}}+{{2}^{r}}+\cdots +{{n}^{r}} \right)}$
On LHS alternate terms cancel each other except the first and the last term.
Hence, we have
$n+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}={{\left( n+1 \right)}^{m+1}}-1}$
Subtracting n from both sides, we get
$\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)$
Hence option [a] is correct.
Note: We can verify the correctness of our solution by checking the correctness of our result of m = 1, 2.
For m = 1, we have
$\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}}{{=}^{2}}{{C}_{1}}{{S}_{1}}=2\left( 1+2+\cdots +n \right)=n\left( n+1 \right)$
Also, we have
${{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)={{\left( n+1 \right)}^{2}}-\left( n+1 \right)=n\left( n+1 \right)$
LHS = RHS for m = 1.
For m = 2, we have
\[\begin{align}
&\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}}{{=}^{3}}{{C}_{1}}{{S}_{1}}{{+}^{3}}{{C}_{2}}{{S}_{2}}=3\left( 1+2+\cdots +n \right)+3\left( {{1}^{2}}+{{2}^{2}}+\cdots +{{n}^{2}} \right) \\
& =3\left( \dfrac{n\left( n+1 \right)}{2}+\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)=\dfrac{3\left( n \right)\left( n+1 \right)}{2}\left( 1+\dfrac{2n+3}{3} \right)=n\left( n+1 \right)\left( n+2 \right) \\
\end{align}\]
Also, we have
${{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)={{\left( n+1 \right)}^{3}}-\left( n+1 \right)=\left( n+1 \right)\left( {{n}^{2}}+2n+1-1 \right)=n\left( n+1 \right)\left( n+2 \right)$
Hence, LHS = RHS for m = 2.
Hence our solution is verified to be correct.
Complete step-by-step solution -
We have ${{S}_{k}}={{1}^{k}}+{{2}^{k}}+\cdots +{{n}^{k}}$
Now, we know that ${{\left( 1+x \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{x}^{r}}}$
Put x =1, we get
${{\left( 1+1 \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{1}^{r}}=1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{1}^{r}}}+{{1}^{m+1}}}$
Put x = 2, we get
$\begin{align}
& {{\left( 1+2 \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{2}^{r}}=1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{2}^{r}}}+{{2}^{m+1}}} \\
& \vdots \ \ \ \ \ \ \ \ \ \ \ =\ \ \ \ \vdots \\
\end{align}$
Put x = n, we get
${{\left( 1+n \right)}^{m+1}}=\sum\limits_{r=0}^{m+1}{^{m+1}{{C}_{r}}{{n}^{r}}=1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{n}^{r}}}+{{n}^{m+1}}}$
Adding these equation, we get
${{2}^{m+1}}+{{3}^{m+1}}+\cdots +{{\left( n+1 \right)}^{m+1}}=\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{1}^{r}}+{{1}^{m+1}}} \right)+\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{2}^{r}}+{{2}^{m+1}}} \right)+\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{2}^{r}}+{{3}^{m+1}}} \right)+\cdots +\left( 1+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{n}^{r}}+{{n}^{m+1}}} \right)$
Transposing the terms ${{1}^{m+1}},{{2}^{m+1}},\cdots ,{{n}^{m+1}}$ to LHS, we get
$-{{1}^{m+1}}+{{2}^{m+1}}-{{2}^{m+1}}+\cdots +{{n}^{m+1}}-{{n}^{m+1}}+{{\left( n+1 \right)}^{m+1}}=\left( 1+1+\cdots +1 \right)+\sum\limits_{r=1}^{m}{^{n}{{C}_{r}}\left( {{1}^{r}}+{{2}^{r}}+\cdots +{{n}^{r}} \right)}$
On LHS alternate terms cancel each other except the first and the last term.
Hence, we have
$n+\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}={{\left( n+1 \right)}^{m+1}}-1}$
Subtracting n from both sides, we get
$\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}}={{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)$
Hence option [a] is correct.
Note: We can verify the correctness of our solution by checking the correctness of our result of m = 1, 2.
For m = 1, we have
$\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}}{{=}^{2}}{{C}_{1}}{{S}_{1}}=2\left( 1+2+\cdots +n \right)=n\left( n+1 \right)$
Also, we have
${{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)={{\left( n+1 \right)}^{2}}-\left( n+1 \right)=n\left( n+1 \right)$
LHS = RHS for m = 1.
For m = 2, we have
\[\begin{align}
&\sum\limits_{r=1}^{m}{^{m+1}{{C}_{r}}{{S}_{r}}}{{=}^{3}}{{C}_{1}}{{S}_{1}}{{+}^{3}}{{C}_{2}}{{S}_{2}}=3\left( 1+2+\cdots +n \right)+3\left( {{1}^{2}}+{{2}^{2}}+\cdots +{{n}^{2}} \right) \\
& =3\left( \dfrac{n\left( n+1 \right)}{2}+\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right)=\dfrac{3\left( n \right)\left( n+1 \right)}{2}\left( 1+\dfrac{2n+3}{3} \right)=n\left( n+1 \right)\left( n+2 \right) \\
\end{align}\]
Also, we have
${{\left( n+1 \right)}^{m+1}}-\left( n+1 \right)={{\left( n+1 \right)}^{3}}-\left( n+1 \right)=\left( n+1 \right)\left( {{n}^{2}}+2n+1-1 \right)=n\left( n+1 \right)\left( n+2 \right)$
Hence, LHS = RHS for m = 2.
Hence our solution is verified to be correct.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

