
If it takes 5 minutes to fill a 15 L bucket from a water tap of diameter $ \dfrac{2}{\sqrt{\pi }} $ cm then the Reynolds number for the flow is ( density of water = $ {{10}^{3}}{kg}/{{{m}^{3}}}\; $ and viscosity of water $ =\text{1}{{0}^{-\text{3}}} $ pa.s) close to
(A) 11,000
(B) 550
(C) 1100
(D) 5500
Answer
539.4k+ views
Hint: Reynolds number is a dimensionless value which is applied in fluid mechanics to represent whether the fluid flow in a duct or part of a body is steady or turbulent. Reynolds number is given by ratio of inertial force to viscous force. Use the following formula, $ \left[ 1L={{10}^{-3}}m \right] $
$ R=\dfrac{\rho \nu d}{\eta } $ Here, $ \rho \to $ Fluid density
$ v\to $ Fluid velocity
$ \eta \to $ Fluid viscosity
$ d\to $ Diameter or Length of fluid.
Complete step by step solution
We have given,
( $ \rho $ ) density of water = $ {{10}^{3}}{kg}/{{{m}^{3}}}\; $
( $ \eta $ ) viscosity of water= 10-3 pa.s
We have to find, Reynolds’s number which is given by,
$ R=\dfrac{\rho \nu d}{\eta } $
Here, $ \nu $ is the fluid velocity which can be obtained by following,
$ \nu =\dfrac{4Q}{\pi {{d}^{2}}} $
Q is the volume of water flowing out per second which is given by ,
$ Q=\dfrac{15L}{5\min } $
$ Q=\dfrac{15\times {{10}^{-3}}{{m}^{3}}}{5\times 60s} $ $ \left[ 1L={{10}^{-3}}m \right] $ 1 min =60 sec
$ Q=\dfrac{3\times {{10}^{-3}}{{m}^{3}}}{60s} $
$ Q=5\times {{10}^{-5}}{{m}^{3}} $
Now, d is diameter = $ \dfrac{2}{\sqrt{\pi }} $ cm = $ \dfrac{2}{\sqrt{\pi }} $ ×10-2m
Reynolds’s number is given by,
$ R=\dfrac{\rho \nu d}{\eta } $ = $ \dfrac{\rho }{\eta }\dfrac{4Qd}{\pi {{d}^{2}}} $
$ R=\dfrac{\rho 4Q}{\eta \pi d} $
Put all the values in above equation
$ R=\dfrac{{{10}^{3}}\times 4\times 5\times {{10}^{-5}}}{{{10}^{-3}}\times 3.14\times \dfrac{2}{\sqrt{3.14}}\times {{10}^{-2}}} $ ….. Use $ \left[ \pi =3.14 \right] $
= $ \dfrac{4\times 5}{\sqrt{3.14}\text{ }\times \text{2}}\times \dfrac{{{10}^{-2}}}{{{10}^{-5}}} $
= $ \dfrac{20}{\text{ 2}\times \text{1}\text{.773}}\times {{10}^{3}} $
$ R\approx 5500 $ , This is the approximate value of Reynolds’s number.
Note
Reynolds number formula is used to determine the diameter, velocity and viscosity of the fluid
If Re $ \text{ 2}000 $ , the flow is called Laminar
If Re $ >4000 $ , the flow is called turbulent
If 2000 $ < $ Re $ <4000 $ , the flow is called transition.
Here, Re is Reynolds number,
$ R=\dfrac{\rho \nu d}{\eta } $ Here, $ \rho \to $ Fluid density
$ v\to $ Fluid velocity
$ \eta \to $ Fluid viscosity
$ d\to $ Diameter or Length of fluid.
Complete step by step solution
We have given,
( $ \rho $ ) density of water = $ {{10}^{3}}{kg}/{{{m}^{3}}}\; $
( $ \eta $ ) viscosity of water= 10-3 pa.s
We have to find, Reynolds’s number which is given by,
$ R=\dfrac{\rho \nu d}{\eta } $
Here, $ \nu $ is the fluid velocity which can be obtained by following,
$ \nu =\dfrac{4Q}{\pi {{d}^{2}}} $
Q is the volume of water flowing out per second which is given by ,
$ Q=\dfrac{15L}{5\min } $
$ Q=\dfrac{15\times {{10}^{-3}}{{m}^{3}}}{5\times 60s} $ $ \left[ 1L={{10}^{-3}}m \right] $ 1 min =60 sec
$ Q=\dfrac{3\times {{10}^{-3}}{{m}^{3}}}{60s} $
$ Q=5\times {{10}^{-5}}{{m}^{3}} $
Now, d is diameter = $ \dfrac{2}{\sqrt{\pi }} $ cm = $ \dfrac{2}{\sqrt{\pi }} $ ×10-2m
Reynolds’s number is given by,
$ R=\dfrac{\rho \nu d}{\eta } $ = $ \dfrac{\rho }{\eta }\dfrac{4Qd}{\pi {{d}^{2}}} $
$ R=\dfrac{\rho 4Q}{\eta \pi d} $
Put all the values in above equation
$ R=\dfrac{{{10}^{3}}\times 4\times 5\times {{10}^{-5}}}{{{10}^{-3}}\times 3.14\times \dfrac{2}{\sqrt{3.14}}\times {{10}^{-2}}} $ ….. Use $ \left[ \pi =3.14 \right] $
= $ \dfrac{4\times 5}{\sqrt{3.14}\text{ }\times \text{2}}\times \dfrac{{{10}^{-2}}}{{{10}^{-5}}} $
= $ \dfrac{20}{\text{ 2}\times \text{1}\text{.773}}\times {{10}^{3}} $
$ R\approx 5500 $ , This is the approximate value of Reynolds’s number.
Note
Reynolds number formula is used to determine the diameter, velocity and viscosity of the fluid
If Re $ \text{ 2}000 $ , the flow is called Laminar
If Re $ >4000 $ , the flow is called turbulent
If 2000 $ < $ Re $ <4000 $ , the flow is called transition.
Here, Re is Reynolds number,
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

