
If $\int\limits_{0}^{\pi }{\sqrt{{{\left( \sin x+\sin 2x+\sin 3x \right)}^{2}}+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$ has the value equal to $\left( \dfrac{\pi }{k}+\sqrt{\omega } \right)$ where k and $\omega $ are positive integers, find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$?
(a) 153
(b) 144
(c) 150
(d) 145
Answer
566.7k+ views
Hint: We start solving the problem by expanding the given squares using the formula ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$. We then make use of the formulas ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$, $2\sin A\sin B=\cos \left( B-A \right)-\cos \left( A+B \right)$ and $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$ to proceed through the problem. We then make the necessary calculations and make use of the fact that $\sqrt{{{x}^{2}}}=\left| x \right|$. We then find the interval at which the obtained integrand is negative and then expand the integral using this interval. We then make use of the formulas $\int{\cos xdx}=\sin x+C$, $\int{adx}=ax+C$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx}=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)$to proceed further through the problem. We then make the necessary calculations and then compare the obtained answer with $\left( \dfrac{\pi }{k}+\sqrt{\omega } \right)$ to get the values of $k$ and $\omega $. We then use this values to find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$.
Complete step by step answer:
According to the problem, we are given that the value of definite integral $\int\limits_{0}^{\pi }{\sqrt{{{\left( \sin x+\sin 2x+\sin 3x \right)}^{2}}+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$ is equal to $\left( \dfrac{\pi }{k}+\sqrt{\omega } \right)$. We need to find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$.
Let us assume $I=\int\limits_{0}^{\pi }{\sqrt{{{\left( \sin x+\sin 2x+\sin 3x \right)}^{2}}+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$.
We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{{{\sin }^{2}}x+{{\sin }^{2}}2x+{{\sin }^{2}}3x+2\sin x\sin 2x+2\sin 2x\sin 3x+2\sin x\sin 3x+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$.
Similarly, we get ${{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}={{\cos }^{2}}x+{{\cos }^{2}}2x+{{\cos }^{2}}3x+2\cos x\cos 2x+2\cos 2x\cos 3x+2\cos x\cos 3x$.
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$.
\[\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{1+1+1+2\sin x\sin 2x+2\sin 2x\sin 3x+2\sin x\sin 3x+2\cos x\cos 2x+2\cos 2x\cos 3x+2\cos x\cos 3x}dx}\].
We know that $2\sin A\sin B=\cos \left( B-A \right)-\cos \left( A+B \right)$ and $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$.
So, we get $2\sin A\sin B+2\cos A\cos B=\cos \left( B-A \right)+\cos \left( A-B \right)$. We know that $\cos \left( -x \right)=\cos x$.
$\Rightarrow 2\sin A\sin B+2\cos A\cos B=2\cos \left( A-B \right)$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+2\cos \left( 2x-x \right)+2\cos \left( 3x-2x \right)+2\cos \left( 3x-x \right)}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+2\cos \left( x \right)+2\cos \left( x \right)+2\cos \left( 2x \right)}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+4\cos \left( x \right)+2\cos \left( 2x \right)}dx}$.
We know that $\cos 2x=2{{\cos }^{2}}x-1$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+4\cos \left( x \right)+2\left( 2{{\cos }^{2}}x-1 \right)}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+4\cos \left( x \right)+4{{\cos }^{2}}x-2}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{4{{\cos }^{2}}x+4\cos x+1}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{{{\left( 2\cos x+1 \right)}^{2}}}dx}$.
We know that $\sqrt{{{x}^{2}}}=\left| x \right|$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\left| 2\cos x+1 \right|dx}$.
Let us find the interval at which $2\cos x+1\le 0$.
$\Rightarrow 2\cos x\le -1$.
$\Rightarrow \cos x\le \dfrac{-1}{2}$.
$\Rightarrow x\in \left[ \dfrac{2\pi }{3},\pi \right]$.
So, we get the definite integral as $I=\int\limits_{0}^{\dfrac{2\pi }{3}}{\left( 2\cos x+1 \right)dx}+\int\limits_{\dfrac{2\pi }{3}}^{\pi }{-\left( 2\cos x+1 \right)dx}$.
$\Rightarrow I=\int\limits_{0}^{\dfrac{2\pi }{3}}{\left( 2\cos x+1 \right)dx}-\int\limits_{\dfrac{2\pi }{3}}^{\pi }{\left( 2\cos x+1 \right)dx}$.
We know that $\int{\cos xdx}=\sin x+C$, $\int{adx}=ax+C$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx}=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)$.
$\Rightarrow I=\left[ 2\sin x+x \right]_{0}^{\dfrac{2\pi }{3}}-\left[ 2\sin x+x \right]_{\dfrac{2\pi }{3}}^{\pi }$.
$\Rightarrow I=\left( 2\sin \dfrac{2\pi }{3}+\dfrac{2\pi }{3} \right)-\left( 2\sin 0+0 \right)-\left( \left( 2\sin \pi +\pi \right)-\left( 2\sin \dfrac{2\pi }{3}+\dfrac{2\pi }{3} \right) \right)$.
$\Rightarrow I=\left( 2\left( \dfrac{\sqrt{3}}{2} \right)+\dfrac{2\pi }{3} \right)-\left( 0+\pi \right)+\left( 2\left( \dfrac{\sqrt{3}}{2} \right)+\dfrac{2\pi }{3} \right)$.
$\Rightarrow I=2\sqrt{3}+\dfrac{4\pi }{3}-\pi $.
$\Rightarrow I=\dfrac{\pi }{3}+\sqrt{12}$.
Let us compare the obtained answer with $\left( \dfrac{\pi }{k}+\sqrt{\omega } \right)$. So, we get $k=3$ and $\omega =12$.
Now, let us find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$.
So, we have ${{k}^{2}}+{{\omega }^{2}}={{3}^{2}}+{{12}^{2}}$.
$\Rightarrow {{k}^{2}}+{{\omega }^{2}}=9+144$.
$\Rightarrow {{k}^{2}}+{{\omega }^{2}}=153$.
So, the correct answer is “Option a”.
Note: We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We should not forget to find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$ after finding the value of definite integral, which is the common mistake done by students. We should take \[\sqrt{{{\left( 2\cos x+1 \right)}^{2}}}=2\cos x+1\] which is the mistake done by students and this leads us to the wrong answer.
Complete step by step answer:
According to the problem, we are given that the value of definite integral $\int\limits_{0}^{\pi }{\sqrt{{{\left( \sin x+\sin 2x+\sin 3x \right)}^{2}}+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$ is equal to $\left( \dfrac{\pi }{k}+\sqrt{\omega } \right)$. We need to find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$.
Let us assume $I=\int\limits_{0}^{\pi }{\sqrt{{{\left( \sin x+\sin 2x+\sin 3x \right)}^{2}}+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$.
We know that ${{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{{{\sin }^{2}}x+{{\sin }^{2}}2x+{{\sin }^{2}}3x+2\sin x\sin 2x+2\sin 2x\sin 3x+2\sin x\sin 3x+{{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}}dx}$.
Similarly, we get ${{\left( \cos x+\cos 2x+\cos 3x \right)}^{2}}={{\cos }^{2}}x+{{\cos }^{2}}2x+{{\cos }^{2}}3x+2\cos x\cos 2x+2\cos 2x\cos 3x+2\cos x\cos 3x$.
We know that ${{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1$.
\[\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{1+1+1+2\sin x\sin 2x+2\sin 2x\sin 3x+2\sin x\sin 3x+2\cos x\cos 2x+2\cos 2x\cos 3x+2\cos x\cos 3x}dx}\].
We know that $2\sin A\sin B=\cos \left( B-A \right)-\cos \left( A+B \right)$ and $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$.
So, we get $2\sin A\sin B+2\cos A\cos B=\cos \left( B-A \right)+\cos \left( A-B \right)$. We know that $\cos \left( -x \right)=\cos x$.
$\Rightarrow 2\sin A\sin B+2\cos A\cos B=2\cos \left( A-B \right)$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+2\cos \left( 2x-x \right)+2\cos \left( 3x-2x \right)+2\cos \left( 3x-x \right)}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+2\cos \left( x \right)+2\cos \left( x \right)+2\cos \left( 2x \right)}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+4\cos \left( x \right)+2\cos \left( 2x \right)}dx}$.
We know that $\cos 2x=2{{\cos }^{2}}x-1$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+4\cos \left( x \right)+2\left( 2{{\cos }^{2}}x-1 \right)}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{3+4\cos \left( x \right)+4{{\cos }^{2}}x-2}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{4{{\cos }^{2}}x+4\cos x+1}dx}$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\sqrt{{{\left( 2\cos x+1 \right)}^{2}}}dx}$.
We know that $\sqrt{{{x}^{2}}}=\left| x \right|$.
$\Rightarrow I=\int\limits_{0}^{\pi }{\left| 2\cos x+1 \right|dx}$.
Let us find the interval at which $2\cos x+1\le 0$.
$\Rightarrow 2\cos x\le -1$.
$\Rightarrow \cos x\le \dfrac{-1}{2}$.
$\Rightarrow x\in \left[ \dfrac{2\pi }{3},\pi \right]$.
So, we get the definite integral as $I=\int\limits_{0}^{\dfrac{2\pi }{3}}{\left( 2\cos x+1 \right)dx}+\int\limits_{\dfrac{2\pi }{3}}^{\pi }{-\left( 2\cos x+1 \right)dx}$.
$\Rightarrow I=\int\limits_{0}^{\dfrac{2\pi }{3}}{\left( 2\cos x+1 \right)dx}-\int\limits_{\dfrac{2\pi }{3}}^{\pi }{\left( 2\cos x+1 \right)dx}$.
We know that $\int{\cos xdx}=\sin x+C$, $\int{adx}=ax+C$ and $\int\limits_{a}^{b}{{{f}^{'}}\left( x \right)dx}=\left[ f\left( x \right) \right]_{a}^{b}=f\left( b \right)-f\left( a \right)$.
$\Rightarrow I=\left[ 2\sin x+x \right]_{0}^{\dfrac{2\pi }{3}}-\left[ 2\sin x+x \right]_{\dfrac{2\pi }{3}}^{\pi }$.
$\Rightarrow I=\left( 2\sin \dfrac{2\pi }{3}+\dfrac{2\pi }{3} \right)-\left( 2\sin 0+0 \right)-\left( \left( 2\sin \pi +\pi \right)-\left( 2\sin \dfrac{2\pi }{3}+\dfrac{2\pi }{3} \right) \right)$.
$\Rightarrow I=\left( 2\left( \dfrac{\sqrt{3}}{2} \right)+\dfrac{2\pi }{3} \right)-\left( 0+\pi \right)+\left( 2\left( \dfrac{\sqrt{3}}{2} \right)+\dfrac{2\pi }{3} \right)$.
$\Rightarrow I=2\sqrt{3}+\dfrac{4\pi }{3}-\pi $.
$\Rightarrow I=\dfrac{\pi }{3}+\sqrt{12}$.
Let us compare the obtained answer with $\left( \dfrac{\pi }{k}+\sqrt{\omega } \right)$. So, we get $k=3$ and $\omega =12$.
Now, let us find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$.
So, we have ${{k}^{2}}+{{\omega }^{2}}={{3}^{2}}+{{12}^{2}}$.
$\Rightarrow {{k}^{2}}+{{\omega }^{2}}=9+144$.
$\Rightarrow {{k}^{2}}+{{\omega }^{2}}=153$.
So, the correct answer is “Option a”.
Note: We can see that the given problem contains a huge amount of calculation so, we need to perform each step carefully in order to avoid confusion and calculation mistakes. We should not forget to find the value of $\left( {{k}^{2}}+{{\omega }^{2}} \right)$ after finding the value of definite integral, which is the common mistake done by students. We should take \[\sqrt{{{\left( 2\cos x+1 \right)}^{2}}}=2\cos x+1\] which is the mistake done by students and this leads us to the wrong answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

