
If $\int {f(x)dx} = \Psi (x)$, then $\int {{x^5}f\left( {{x^3}} \right)dx} $ is equal to:
A. $\dfrac{1}{3}{x^3}\Psi \left( {{x^3}} \right) - 3\int {{x^3}\Psi \left( {{x^3}} \right)dx} + C$
B. $\dfrac{1}{3}{x^3}\Psi \left( {{x^3}} \right) - \int {{x^2}\Psi \left( {{x^3}} \right)dx} + C$
C. $\dfrac{1}{3}\left[ {{x^3}\Psi \left( {{x^3}} \right) - \int {{x^3}\Psi \left( {{x^3}} \right)dx} } \right] + C$
D. $\dfrac{1}{3}\left[ {{x^3}\Psi \left( {{x^3}} \right) - \int {{x^2}\Psi \left( {{x^3}} \right)dx} } \right] + C$
Answer
495k+ views
Hint:Solve by integrating the given expression in parts: \[\int {f(x)g(x)dx} = f(x)\int {g(x)dx} - \int {\left[
{f'(x)\int {g(x)dx} } \right]dx} \]. Make an appropriate substitution. If we substitute x = f(t), then
\[dx{\text{ }} = {\text{ }}f'\left( t \right){\text{ }}dt\]and $\int {f(x)dx} = \int {f\left[ {f(t)} \right]f'(t)dt} $.
Substitute ${x^3} = t$ and integrate by parts.
Recall that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and that if $\int {f(x)dx} = g(x)$, then $\int {f(y)dy} =
g(y)$.
Complete step by step Solution:
Let's say $I = \int {{x^5}f\left( {{x^3}} \right)dx} $, which can also be written as:
$ \Rightarrow I = \int {{x^3}.{x^2}f\left( {{x^3}} \right)dx} $
Substituting ${x^3} = t$, we have $3{x^2}dx = dt$.
And, $I = \dfrac{1}{3}\int {tf(t)dt} $.
Integrating by parts, taking t as the first function and f(t) as the second function, we get:
$ \Rightarrow I = \dfrac{1}{3}\left[ {t\int {f(t)dt} - \int {\left( {\dfrac{d}{{dt}}t\int {f(t)dt} } \right)dt} }
\right] + C$
Differentiating ‘t’ w.r.t. ‘t’, we get ‘1’; so
$ \Rightarrow I = \dfrac{1}{3}\left[ {t\int {f(t)dt} - \int {\left( {\int {f(t)dt} } \right)dt} } \right] + C$
It is given that $\int {f(x)dx} = \Psi (x)$
On Substituting value in equation, we get;
$ \Rightarrow I = \dfrac{1}{3}\left[ {t\Psi (t) - \int {\Psi (t)dt} } \right] + C$
Back substituting ${x^3} = t$, we have $3{x^2}dx = dt$, we get:
$ \Rightarrow I = \dfrac{1}{3}\left[ {{x^3}\Psi ({x^3}) - \int {\Psi ({x^3})\left( {3{x^2}} \right)dx} } \right] +
C$
$ \Rightarrow I = \dfrac{1}{3}{x^3}\Psi ({x^3}) - \int {{x^2}\Psi ({x^3})dx} + C$
Hence, the correct answer is B. $\dfrac{1}{3}{x^3}\Psi ({x^3}) - \int {{x^2}\Psi ({x^3})dx} + C$.
Note:integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. When integrating by parts:
\[\int {f(x)g(x)dx} \] = \[f(x)\int {g(x)dx} \] − \[\int {\left[ {f'(x)\int {g(x)dx} } \right]dx} \], make sure to select the functions f(x) and g(x) in such a manner that we can integrate the derivative of the first function f(x) easily. Usually, it's better to follow the rule of ILATE when selecting the first and the second functions.
I: Inverse Trigonometric Functions
L: Logarithmic Functions
A: Algebraic Functions
T: Trigonometric Functions
E: Exponential Functions
Application of Integrals are very important. Integrals are used to find the area under the curve and we can solve differential equations using integration.
{f'(x)\int {g(x)dx} } \right]dx} \]. Make an appropriate substitution. If we substitute x = f(t), then
\[dx{\text{ }} = {\text{ }}f'\left( t \right){\text{ }}dt\]and $\int {f(x)dx} = \int {f\left[ {f(t)} \right]f'(t)dt} $.
Substitute ${x^3} = t$ and integrate by parts.
Recall that $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ and that if $\int {f(x)dx} = g(x)$, then $\int {f(y)dy} =
g(y)$.
Complete step by step Solution:
Let's say $I = \int {{x^5}f\left( {{x^3}} \right)dx} $, which can also be written as:
$ \Rightarrow I = \int {{x^3}.{x^2}f\left( {{x^3}} \right)dx} $
Substituting ${x^3} = t$, we have $3{x^2}dx = dt$.
And, $I = \dfrac{1}{3}\int {tf(t)dt} $.
Integrating by parts, taking t as the first function and f(t) as the second function, we get:
$ \Rightarrow I = \dfrac{1}{3}\left[ {t\int {f(t)dt} - \int {\left( {\dfrac{d}{{dt}}t\int {f(t)dt} } \right)dt} }
\right] + C$
Differentiating ‘t’ w.r.t. ‘t’, we get ‘1’; so
$ \Rightarrow I = \dfrac{1}{3}\left[ {t\int {f(t)dt} - \int {\left( {\int {f(t)dt} } \right)dt} } \right] + C$
It is given that $\int {f(x)dx} = \Psi (x)$
On Substituting value in equation, we get;
$ \Rightarrow I = \dfrac{1}{3}\left[ {t\Psi (t) - \int {\Psi (t)dt} } \right] + C$
Back substituting ${x^3} = t$, we have $3{x^2}dx = dt$, we get:
$ \Rightarrow I = \dfrac{1}{3}\left[ {{x^3}\Psi ({x^3}) - \int {\Psi ({x^3})\left( {3{x^2}} \right)dx} } \right] +
C$
$ \Rightarrow I = \dfrac{1}{3}{x^3}\Psi ({x^3}) - \int {{x^2}\Psi ({x^3})dx} + C$
Hence, the correct answer is B. $\dfrac{1}{3}{x^3}\Psi ({x^3}) - \int {{x^2}\Psi ({x^3})dx} + C$.
Note:integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. When integrating by parts:
\[\int {f(x)g(x)dx} \] = \[f(x)\int {g(x)dx} \] − \[\int {\left[ {f'(x)\int {g(x)dx} } \right]dx} \], make sure to select the functions f(x) and g(x) in such a manner that we can integrate the derivative of the first function f(x) easily. Usually, it's better to follow the rule of ILATE when selecting the first and the second functions.
I: Inverse Trigonometric Functions
L: Logarithmic Functions
A: Algebraic Functions
T: Trigonometric Functions
E: Exponential Functions
Application of Integrals are very important. Integrals are used to find the area under the curve and we can solve differential equations using integration.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
