
If in triangle ∆PQR, sin P, sin Q, sin R are in Arithmetic Progression (AP). Then,
\[
{\text{A}}{\text{. The altitudes are in AP}} \\
{\text{B}}{\text{. The altitudes are in HP}} \\
{\text{C}}{\text{. The medians are in GP}} \\
{\text{D}}{\text{. The medians are in AP}} \\
\]
Answer
600.6k+ views
Hint – To determine the answer we write the area of the triangle in terms of sides and altitudes. Then we use Sine rule on them.
Complete Step-by-Step solution:
Let a, b, c be the sides of the triangle PQR respectively.
Let $p_1, p_2, p_3$ be the altitudes of the respective sides of the triangle.
We know, the sine rule in a triangle states,
$\dfrac{{\text{a}}}{{{\text{SinP}}}}$ = $\dfrac{{\text{b}}}{{{\text{SinQ}}}}$ = $\dfrac{{\text{c}}}{{{\text{SinR}}}}$ = k (constant) -- (1)
We know that,
Area of the triangle (A)= $\dfrac{1}{2}$ x length of side x length of altitude = $\dfrac{1}{2}$bh
= $\dfrac{1}{2}.a.p_1$
= $\dfrac{1}{2}.b.p_2$
= $\dfrac{1}{2}.c.p_3$
⟹2 (Area of triangle) = 2A =a × $p_1$
⟹$p_1$ = $\dfrac{{2{\text{A}}}}{{\text{a}}} = \dfrac{{{\text{2A}}}}{{{\text{k SinP}}}}$ --- from (1)
Similarly, $p_2$ = $\dfrac{{{\text{2A}}}}{{{\text{k SinQ}}}}$and p3 = $\dfrac{{{\text{2A}}}}{{{\text{k SinR}}}}$
Given Data: sin P, sin Q, sin R are in AP
We know that if the elements of a series are in AP, then their reciprocals are in HP.
Therefore,$\dfrac{1}{{{\text{SinP}}}}$, $\dfrac{1}{{{\text{SinQ}}}}$and $\dfrac{1}{{{\text{SinR}}}}$are in HP.
We multiply it with 2A,
⟹$\dfrac{{{\text{2A}}}}{{{\text{SinP}}}}$, $\dfrac{{{\text{2A}}}}{{{\text{SinQ}}}}$and $\dfrac{{{\text{2A}}}}{{{\text{SinR}}}}$are in HP.
As Area of the triangle is directly proportional to the altitude, we can say
$p_1, p_2$ and $p_3$ are in HP.
Hence, all the altitudes are in HP. Option B is the correct answer.
Note: In order to solve such types of problems the key is to write the area of the triangle in terms of sides and altitudes and using the Sine rule. We should know the relation between AP and HP. HP stands for Harmonic mean which is one of several kinds of average, and in particular, one of the Pythagorean means and is the inverse of AP.
Complete Step-by-Step solution:
Let a, b, c be the sides of the triangle PQR respectively.
Let $p_1, p_2, p_3$ be the altitudes of the respective sides of the triangle.
We know, the sine rule in a triangle states,
$\dfrac{{\text{a}}}{{{\text{SinP}}}}$ = $\dfrac{{\text{b}}}{{{\text{SinQ}}}}$ = $\dfrac{{\text{c}}}{{{\text{SinR}}}}$ = k (constant) -- (1)
We know that,
Area of the triangle (A)= $\dfrac{1}{2}$ x length of side x length of altitude = $\dfrac{1}{2}$bh
= $\dfrac{1}{2}.a.p_1$
= $\dfrac{1}{2}.b.p_2$
= $\dfrac{1}{2}.c.p_3$
⟹2 (Area of triangle) = 2A =a × $p_1$
⟹$p_1$ = $\dfrac{{2{\text{A}}}}{{\text{a}}} = \dfrac{{{\text{2A}}}}{{{\text{k SinP}}}}$ --- from (1)
Similarly, $p_2$ = $\dfrac{{{\text{2A}}}}{{{\text{k SinQ}}}}$and p3 = $\dfrac{{{\text{2A}}}}{{{\text{k SinR}}}}$
Given Data: sin P, sin Q, sin R are in AP
We know that if the elements of a series are in AP, then their reciprocals are in HP.
Therefore,$\dfrac{1}{{{\text{SinP}}}}$, $\dfrac{1}{{{\text{SinQ}}}}$and $\dfrac{1}{{{\text{SinR}}}}$are in HP.
We multiply it with 2A,
⟹$\dfrac{{{\text{2A}}}}{{{\text{SinP}}}}$, $\dfrac{{{\text{2A}}}}{{{\text{SinQ}}}}$and $\dfrac{{{\text{2A}}}}{{{\text{SinR}}}}$are in HP.
As Area of the triangle is directly proportional to the altitude, we can say
$p_1, p_2$ and $p_3$ are in HP.
Hence, all the altitudes are in HP. Option B is the correct answer.
Note: In order to solve such types of problems the key is to write the area of the triangle in terms of sides and altitudes and using the Sine rule. We should know the relation between AP and HP. HP stands for Harmonic mean which is one of several kinds of average, and in particular, one of the Pythagorean means and is the inverse of AP.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

