
If in a $\Delta ABC$ ,a = 6 , b = 3 and cos ( A – B ) = $\dfrac{4}{5}$ then find its area ?
Answer
511.8k+ views
Hint: With the given details we can apply it in the formula \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \cos \left( {A - B} \right)}}{{1 + \cos \left( {A - B} \right)}}} \]and we know that $\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}$using which we can find the value of C and since its 90 degree we can find the area using the formula $\dfrac{1}{2}*base*height$.
Complete step-by-step answer:
We are given that a = 6 cm and b = 3 cm and cos ( A – B ) = $\dfrac{4}{5}$
We know that \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \cos \left( {A - B} \right)}}{{1 + \cos \left( {A - B} \right)}}} \]
Now applying the given value we get,
$
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{{1 + \dfrac{4}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{{\dfrac{{5 + 4}}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{1}{9}} = \dfrac{1}{3} \\
$
Using this we can substitute in the formula
$ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}$
Substituting all the known values,
$
\Rightarrow \dfrac{1}{3} = \dfrac{{6 - 3}}{{6 + 3}}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{3}{9}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{1}{3}\cot \dfrac{C}{2} \\
\Rightarrow \cot \dfrac{C}{2} = 1 \\
\Rightarrow \dfrac{C}{2} = {\cot ^{ - 1}}(1) = \dfrac{\pi }{4} \\
\Rightarrow C = \dfrac{{2\pi }}{4} = \dfrac{\pi }{2} \\
$
From this we get that the angle C is a right angle
Therefore the triangle ABC is a right angle triangle , right angled at B
Therefore the area of the triangle = $\dfrac{1}{2}*base*height$ sq . units
=$\dfrac{1}{2}*a*b$
=$\dfrac{1}{2}*6*3 = \dfrac{1}{2}*18 = 9sq.units$
Therefore the area of the triangle is 9 sq.units
Note: Here we get to know that it’s a right triangle hence we use the side AC as its height but if it is not an right triangle the altitude may vary.
Complete step-by-step answer:
We are given that a = 6 cm and b = 3 cm and cos ( A – B ) = $\dfrac{4}{5}$
We know that \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \cos \left( {A - B} \right)}}{{1 + \cos \left( {A - B} \right)}}} \]
Now applying the given value we get,
$
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{{1 + \dfrac{4}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{{\dfrac{{5 + 4}}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{1}{9}} = \dfrac{1}{3} \\
$
Using this we can substitute in the formula
$ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}$
Substituting all the known values,
$
\Rightarrow \dfrac{1}{3} = \dfrac{{6 - 3}}{{6 + 3}}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{3}{9}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{1}{3}\cot \dfrac{C}{2} \\
\Rightarrow \cot \dfrac{C}{2} = 1 \\
\Rightarrow \dfrac{C}{2} = {\cot ^{ - 1}}(1) = \dfrac{\pi }{4} \\
\Rightarrow C = \dfrac{{2\pi }}{4} = \dfrac{\pi }{2} \\
$
From this we get that the angle C is a right angle
Therefore the triangle ABC is a right angle triangle , right angled at B

Therefore the area of the triangle = $\dfrac{1}{2}*base*height$ sq . units
=$\dfrac{1}{2}*a*b$
=$\dfrac{1}{2}*6*3 = \dfrac{1}{2}*18 = 9sq.units$
Therefore the area of the triangle is 9 sq.units
Note: Here we get to know that it’s a right triangle hence we use the side AC as its height but if it is not an right triangle the altitude may vary.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
