
If in a $\Delta ABC$ ,a = 6 , b = 3 and cos ( A – B ) = $\dfrac{4}{5}$ then find its area ?
Answer
576.6k+ views
Hint: With the given details we can apply it in the formula \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \cos \left( {A - B} \right)}}{{1 + \cos \left( {A - B} \right)}}} \]and we know that $\tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}$using which we can find the value of C and since its 90 degree we can find the area using the formula $\dfrac{1}{2}*base*height$.
Complete step-by-step answer:
We are given that a = 6 cm and b = 3 cm and cos ( A – B ) = $\dfrac{4}{5}$
We know that \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \cos \left( {A - B} \right)}}{{1 + \cos \left( {A - B} \right)}}} \]
Now applying the given value we get,
$
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{{1 + \dfrac{4}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{{\dfrac{{5 + 4}}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{1}{9}} = \dfrac{1}{3} \\
$
Using this we can substitute in the formula
$ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}$
Substituting all the known values,
$
\Rightarrow \dfrac{1}{3} = \dfrac{{6 - 3}}{{6 + 3}}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{3}{9}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{1}{3}\cot \dfrac{C}{2} \\
\Rightarrow \cot \dfrac{C}{2} = 1 \\
\Rightarrow \dfrac{C}{2} = {\cot ^{ - 1}}(1) = \dfrac{\pi }{4} \\
\Rightarrow C = \dfrac{{2\pi }}{4} = \dfrac{\pi }{2} \\
$
From this we get that the angle C is a right angle
Therefore the triangle ABC is a right angle triangle , right angled at B
Therefore the area of the triangle = $\dfrac{1}{2}*base*height$ sq . units
=$\dfrac{1}{2}*a*b$
=$\dfrac{1}{2}*6*3 = \dfrac{1}{2}*18 = 9sq.units$
Therefore the area of the triangle is 9 sq.units
Note: Here we get to know that it’s a right triangle hence we use the side AC as its height but if it is not an right triangle the altitude may vary.
Complete step-by-step answer:
We are given that a = 6 cm and b = 3 cm and cos ( A – B ) = $\dfrac{4}{5}$
We know that \[\tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \cos \left( {A - B} \right)}}{{1 + \cos \left( {A - B} \right)}}} \]
Now applying the given value we get,
$
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{1 - \dfrac{4}{5}}}{{1 + \dfrac{4}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{{\dfrac{{5 - 4}}{5}}}{{\dfrac{{5 + 4}}{5}}}} \\
\Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \sqrt {\dfrac{1}{9}} = \dfrac{1}{3} \\
$
Using this we can substitute in the formula
$ \Rightarrow \tan \left( {\dfrac{{A - B}}{2}} \right) = \dfrac{{a - b}}{{a + b}}\cot \dfrac{C}{2}$
Substituting all the known values,
$
\Rightarrow \dfrac{1}{3} = \dfrac{{6 - 3}}{{6 + 3}}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{3}{9}\cot \dfrac{C}{2} \\
\Rightarrow \dfrac{1}{3} = \dfrac{1}{3}\cot \dfrac{C}{2} \\
\Rightarrow \cot \dfrac{C}{2} = 1 \\
\Rightarrow \dfrac{C}{2} = {\cot ^{ - 1}}(1) = \dfrac{\pi }{4} \\
\Rightarrow C = \dfrac{{2\pi }}{4} = \dfrac{\pi }{2} \\
$
From this we get that the angle C is a right angle
Therefore the triangle ABC is a right angle triangle , right angled at B
Therefore the area of the triangle = $\dfrac{1}{2}*base*height$ sq . units
=$\dfrac{1}{2}*a*b$
=$\dfrac{1}{2}*6*3 = \dfrac{1}{2}*18 = 9sq.units$
Therefore the area of the triangle is 9 sq.units
Note: Here we get to know that it’s a right triangle hence we use the side AC as its height but if it is not an right triangle the altitude may vary.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

