
If ${{G}_{1}}$ and ${{G}_{2}}$ are geometric mean of two series of sizes ${{n}_{1}}$ and ${{n}_{2}}$ respectively and G is geometric mean of their combined series, then log G is equal to
A. $\log {{G}_{1}}+\log {{G}_{2}}$
B. ${{n}_{1}}\log {{G}_{1}}+{{n}_{2}}\log {{G}_{2}}$
C. $\dfrac{\log {{G}_{1}}+\log {{G}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
D. $\dfrac{{{n}_{1}}\log {{G}_{1}}+{{n}_{2}}\log {{G}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
Answer
573.3k+ views
Hint: First of all, we have assume that ${{G}_{1}}$ is a series containing $({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})$ and ${{G}_{2}}$ is a series containing $({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})$. We have to use the equation to find the geometric mean. That is, ${{G}_{1}}={{({{x}_{1}},{{x}_{2}},....,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}$ and similarly for ${{G}_{2}}$. It is also given that G is the geometric mean of their combined series. So, the equation will be $G={{({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}\times {{({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$. After that we can find the value of log G.
Complete step-by-step answer:
First of all, we have assume that ${{G}_{1}}$ is a series containing $({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})$ and ${{G}_{2}}$ is a series containing $({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})$. Here, the size of ${{G}_{1}}$ is ${{n}_{1}}$ and ${{G}_{2}}$ is ${{n}_{2}}$.
Now, we can use the geometric mean, ${{G}_{1}}$.
${{G}_{1}}={{({{x}_{1}},{{x}_{2}},....,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}$
$\Rightarrow $$({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})=G_{1}^{{{n}_{1}}}$
The geometric mean, ${{G}_{2}}$ will be,
${{G}_{2}}={{({{y}_{1}},{{y}_{2}},....,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
$\Rightarrow $$({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})=G_{2}^{{{n}_{2}}}$
Now, it is said that geometric mean G is the combined mean of their series. So,
$G={{({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}\times {{({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
On simplifying, we get,
$G={{(({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})\times ({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}}))}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can rewrite it as,
$G={{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can find the log G. So, the above equation becomes,
$\log G=\log {{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
On solving, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further expanding, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}})+\log (G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further solving, we will get,
$\therefore \log G=\dfrac{{{n}_{1}}\log ({{G}_{1}})+{{n}_{2}}\log ({{G}_{2}})}{{{n}_{1}}+{{n}_{2}}}$
So, the answer is option D.
Note: The important equations used to solve this problem are $\log (AB)=\log A+\log B$ and $\log ({{A}^{n}})=n\log (A)$. Also while finding the G, we sometimes tend to make mistakes such as interchange ${{G}_{1}}$ and ${{G}_{2}}$. In the competitive exam, be careful while marking the answers because in the given option itself the option (C) and option (D) seems to be similar.
Complete step-by-step answer:
First of all, we have assume that ${{G}_{1}}$ is a series containing $({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})$ and ${{G}_{2}}$ is a series containing $({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})$. Here, the size of ${{G}_{1}}$ is ${{n}_{1}}$ and ${{G}_{2}}$ is ${{n}_{2}}$.
Now, we can use the geometric mean, ${{G}_{1}}$.
${{G}_{1}}={{({{x}_{1}},{{x}_{2}},....,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}$
$\Rightarrow $$({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})=G_{1}^{{{n}_{1}}}$
The geometric mean, ${{G}_{2}}$ will be,
${{G}_{2}}={{({{y}_{1}},{{y}_{2}},....,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
$\Rightarrow $$({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})=G_{2}^{{{n}_{2}}}$
Now, it is said that geometric mean G is the combined mean of their series. So,
$G={{({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}\times {{({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
On simplifying, we get,
$G={{(({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})\times ({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}}))}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can rewrite it as,
$G={{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can find the log G. So, the above equation becomes,
$\log G=\log {{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
On solving, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further expanding, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}})+\log (G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further solving, we will get,
$\therefore \log G=\dfrac{{{n}_{1}}\log ({{G}_{1}})+{{n}_{2}}\log ({{G}_{2}})}{{{n}_{1}}+{{n}_{2}}}$
So, the answer is option D.
Note: The important equations used to solve this problem are $\log (AB)=\log A+\log B$ and $\log ({{A}^{n}})=n\log (A)$. Also while finding the G, we sometimes tend to make mistakes such as interchange ${{G}_{1}}$ and ${{G}_{2}}$. In the competitive exam, be careful while marking the answers because in the given option itself the option (C) and option (D) seems to be similar.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

