
If ${{G}_{1}}$ and ${{G}_{2}}$ are geometric mean of two series of sizes ${{n}_{1}}$ and ${{n}_{2}}$ respectively and G is geometric mean of their combined series, then log G is equal to
A. $\log {{G}_{1}}+\log {{G}_{2}}$
B. ${{n}_{1}}\log {{G}_{1}}+{{n}_{2}}\log {{G}_{2}}$
C. $\dfrac{\log {{G}_{1}}+\log {{G}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
D. $\dfrac{{{n}_{1}}\log {{G}_{1}}+{{n}_{2}}\log {{G}_{2}}}{{{n}_{1}}+{{n}_{2}}}$
Answer
587.7k+ views
Hint: First of all, we have assume that ${{G}_{1}}$ is a series containing $({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})$ and ${{G}_{2}}$ is a series containing $({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})$. We have to use the equation to find the geometric mean. That is, ${{G}_{1}}={{({{x}_{1}},{{x}_{2}},....,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}$ and similarly for ${{G}_{2}}$. It is also given that G is the geometric mean of their combined series. So, the equation will be $G={{({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}\times {{({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$. After that we can find the value of log G.
Complete step-by-step answer:
First of all, we have assume that ${{G}_{1}}$ is a series containing $({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})$ and ${{G}_{2}}$ is a series containing $({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})$. Here, the size of ${{G}_{1}}$ is ${{n}_{1}}$ and ${{G}_{2}}$ is ${{n}_{2}}$.
Now, we can use the geometric mean, ${{G}_{1}}$.
${{G}_{1}}={{({{x}_{1}},{{x}_{2}},....,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}$
$\Rightarrow $$({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})=G_{1}^{{{n}_{1}}}$
The geometric mean, ${{G}_{2}}$ will be,
${{G}_{2}}={{({{y}_{1}},{{y}_{2}},....,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
$\Rightarrow $$({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})=G_{2}^{{{n}_{2}}}$
Now, it is said that geometric mean G is the combined mean of their series. So,
$G={{({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}\times {{({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
On simplifying, we get,
$G={{(({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})\times ({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}}))}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can rewrite it as,
$G={{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can find the log G. So, the above equation becomes,
$\log G=\log {{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
On solving, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further expanding, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}})+\log (G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further solving, we will get,
$\therefore \log G=\dfrac{{{n}_{1}}\log ({{G}_{1}})+{{n}_{2}}\log ({{G}_{2}})}{{{n}_{1}}+{{n}_{2}}}$
So, the answer is option D.
Note: The important equations used to solve this problem are $\log (AB)=\log A+\log B$ and $\log ({{A}^{n}})=n\log (A)$. Also while finding the G, we sometimes tend to make mistakes such as interchange ${{G}_{1}}$ and ${{G}_{2}}$. In the competitive exam, be careful while marking the answers because in the given option itself the option (C) and option (D) seems to be similar.
Complete step-by-step answer:
First of all, we have assume that ${{G}_{1}}$ is a series containing $({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})$ and ${{G}_{2}}$ is a series containing $({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})$. Here, the size of ${{G}_{1}}$ is ${{n}_{1}}$ and ${{G}_{2}}$ is ${{n}_{2}}$.
Now, we can use the geometric mean, ${{G}_{1}}$.
${{G}_{1}}={{({{x}_{1}},{{x}_{2}},....,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}$
$\Rightarrow $$({{x}_{1}},{{x}_{2}},....{{x}_{{{n}_{1}}}})=G_{1}^{{{n}_{1}}}$
The geometric mean, ${{G}_{2}}$ will be,
${{G}_{2}}={{({{y}_{1}},{{y}_{2}},....,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
$\Rightarrow $$({{y}_{1}},{{y}_{2}},....{{y}_{{{n}_{2}}}})=G_{2}^{{{n}_{2}}}$
Now, it is said that geometric mean G is the combined mean of their series. So,
$G={{({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})}^{\dfrac{1}{{{n}_{1}}}}}\times {{({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}})}^{\dfrac{1}{{{n}_{2}}}}}$
On simplifying, we get,
$G={{(({{x}_{1}},{{x}_{2}},...,{{x}_{{{n}_{1}}}})\times ({{y}_{1}},{{y}_{2}},...,{{y}_{{{n}_{2}}}}))}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can rewrite it as,
$G={{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
Now, we can find the log G. So, the above equation becomes,
$\log G=\log {{(G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}^{\dfrac{1}{{{n}_{1}}+{{n}_{2}}}}}$
On solving, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}}\times G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further expanding, we get,
$\log G=\dfrac{\log (G_{1}^{{{n}_{1}}})+\log (G_{2}^{{{n}_{2}}})}{{{n}_{1}}+{{n}_{2}}}$
On further solving, we will get,
$\therefore \log G=\dfrac{{{n}_{1}}\log ({{G}_{1}})+{{n}_{2}}\log ({{G}_{2}})}{{{n}_{1}}+{{n}_{2}}}$
So, the answer is option D.
Note: The important equations used to solve this problem are $\log (AB)=\log A+\log B$ and $\log ({{A}^{n}})=n\log (A)$. Also while finding the G, we sometimes tend to make mistakes such as interchange ${{G}_{1}}$ and ${{G}_{2}}$. In the competitive exam, be careful while marking the answers because in the given option itself the option (C) and option (D) seems to be similar.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

