
If G be the centroid of a triangle ABC and O be any other point, prove that $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=B{{C}^{2}}+C{{A}^{2}}+A{{B}^{2}}$ and $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$?
Answer
485.4k+ views
Hint: We start solving the problem by assigning the coordinates to the points for the vertices of triangle ABC. We then find the coordinates of the centroid of the triangle using the fact that the centroid G of a triangle is defined as $\dfrac{A+B+C}{3}$. We then find the required distances using the distance between two points $\left( a,b \right)$ and $\left( c,d \right)$ is defined as $\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}}$ and comparing the obtained results to complete the proof $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=B{{C}^{2}}+C{{A}^{2}}+A{{B}^{2}}$. Similarly, we assume the coordinates to the point O and follow the similar procedure to prove $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$.
Complete step-by-step solution
According to the problem, G be the centroid of a triangle ABC and O be any other point. We need to prove $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=B{{C}^{2}}+C{{A}^{2}}+A{{B}^{2}}$ and $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$.
Let us assume the vertices A, B and C be $\left( {{x}_{1}},{{y}_{1}} \right)$, $\left( {{x}_{2}},{{y}_{2}} \right)$ and $\left( {{x}_{3}},{{y}_{3}} \right)$.
We know that the centroid G of a triangle is defined as $\dfrac{A+B+C}{3}$.
So, we get $G=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$.
We know that the distance between two points $\left( a,b \right)$ and $\left( c,d \right)$ is defined as $\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}}$.
So, we get $A{{B}^{2}}={{\left( \sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}} \right)}^{2}}$.
$\Rightarrow A{{B}^{2}}=x_{1}^{2}+x_{2}^{2}-2{{x}_{1}}{{x}_{2}}+y_{1}^{2}+y_{2}^{2}-2{{y}_{1}}{{y}_{2}}$.
$\Rightarrow A{{B}^{2}}=\left( x_{1}^{2}+x_{2}^{2} \right)+\left( y_{1}^{2}+y_{2}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)$.
Similarly, we get $B{{C}^{2}}=\left( x_{2}^{2}+x_{3}^{2} \right)+\left( y_{2}^{2}+y_{3}^{2} \right)-2\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)$ and $C{{A}^{2}}=\left( x_{3}^{2}+x_{1}^{2} \right)+\left( y_{3}^{2}+y_{1}^{2} \right)-2\left( {{x}_{3}}{{x}_{1}}+{{y}_{3}}{{y}_{1}} \right)$.
Let us consider $A{{B}^{2}}+B{{C}^{2}}+C{{A}^{2}}$.
\[\Rightarrow A{{B}^{2}}+B{{C}^{2}}+C{{A}^{2}}=2\left( x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \right)+2\left( y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+{{x}_{3}}{{x}_{1}}+{{y}_{1}}{{y}_{2}}+{{y}_{2}}{{y}_{3}}+{{y}_{3}}{{y}_{1}} \right)\]---(1).
Now, let us find $G{{A}^{2}}$, $G{{B}^{2}}$ and $G{{C}^{2}}$.
So, we get \[G{{A}^{2}}={{\left( \sqrt{{{\left( {{x}_{1}}-\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right) \right)}^{2}}+{{\left( {{y}_{1}}-\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right)}^{2}}} \right)}^{2}}\].
\[\Rightarrow G{{A}^{2}}={{\left( \dfrac{2{{x}_{1}}-{{x}_{2}}-{{x}_{3}}}{3} \right)}^{2}}+{{\left( \dfrac{2{{y}_{1}}-{{y}_{2}}-{{y}_{3}}}{3} \right)}^{2}}\].
\[\Rightarrow G{{A}^{2}}=\left( \dfrac{4x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4{{x}_{1}}{{x}_{2}}+2{{x}_{2}}{{x}_{3}}-4{{x}_{1}}{{x}_{3}}}{9} \right)+\left(\dfrac{4y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-4{{y}_{1}}{{y}_{2}}-2{{y}_{2}}{{y}_{3}}-4{{y}_{1}}{{y}_{3}}}{9} \right)\].
\[\Rightarrow G{{A}^{2}}=\left( \dfrac{4\left( x_{1}^{2}+y_{1}^{2} \right)+\left( x_{2}^{2}+y_{2}^{2} \right)+\left( x_{3}^{2}+y_{3}^{2} \right)-4\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)+2\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-4\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)\].
Similarly, we get \[G{{B}^{2}}=\left( \dfrac{\left( x_{1}^{2}+y_{1}^{2} \right)+4\left( x_{2}^{2}+y_{2}^{2} \right)+\left( x_{3}^{2}+y_{3}^{2} \right)-4\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-4\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)+2\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)\],
\[\Rightarrow G{{C}^{2}}=\left( \dfrac{\left( x_{1}^{2}+y_{1}^{2} \right)+\left( x_{2}^{2}+y_{2}^{2} \right)+4\left( x_{3}^{2}+y_{3}^{2} \right)+2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-4\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-4\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)\].
Now, let us consider $G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}$.
$G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}=\left( \dfrac{6\left( x_{1}^{2}+y_{1}^{2} \right)+6\left( x_{2}^{2}+y_{2}^{2} \right)+6\left( x_{3}^{2}+y_{3}^{2} \right)-6\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-6\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-6\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)$.
$\Rightarrow G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}=\left( \dfrac{2\left( x_{1}^{2}+y_{1}^{2} \right)+2\left( x_{2}^{2}+y_{2}^{2} \right)+2\left( x_{3}^{2}+y_{3}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-2\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-2\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{3} \right)$---(2).
$\Rightarrow 3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=2\left( x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}}+{{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)$.
From equation (1), we get $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=A{{B}^{2}}+B{{C}^{2}}+A{{C}^{2}}$.
So, we have proved $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=A{{B}^{2}}+B{{C}^{2}}+A{{C}^{2}}$ ---(3).
Now, let us assume the point O be $\left( x,y \right)$.
Now, let us find $O{{A}^{2}}$.
So, we get $O{{A}^{2}}={{\left( \sqrt{{{\left( {{x}_{1}}-x \right)}^{2}}+{{\left( {{y}_{1}}-y \right)}^{2}}} \right)}^{2}}$.
$\Rightarrow O{{A}^{2}}=x_{1}^{2}+{{x}^{2}}-2x{{x}_{1}}+y_{1}^{2}+{{y}^{2}}-2y{{y}_{1}}$.
$\Rightarrow O{{A}^{2}}=\left( x_{1}^{2}+y_{1}^{2} \right)+\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{1}}+y{{y}_{1}} \right)$.
Similarly, we get $O{{B}^{2}}=\left( x_{2}^{2}+y_{2}^{2} \right)+\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{2}}+y{{y}_{2}} \right)$ and $O{{A}^{2}}=\left( x_{3}^{2}+y_{3}^{2} \right)+\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{3}}+y{{y}_{3}} \right)$.
Let us consider $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}$.
\[\Rightarrow O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=\left( x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \right)+3\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{1}}+x{{x}_{2}}+x{{x}_{3}}+y{{y}_{1}}+y{{y}_{2}}+y{{y}_{3}} \right)\].
\[\Rightarrow O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=\left( x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \right)+3\left( {{x}^{2}}+{{y}^{2}} \right)-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)\]---(4).
Now, let us find $G{{O}^{2}}$.
\[\Rightarrow G{{O}^{2}}={{\left( \sqrt{{{\left( x-\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right) \right)}^{2}}+{{\left( y-\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right)}^{2}}} \right)}^{2}}\].
\[\Rightarrow G{{O}^{2}}={{x}^{2}}+{{\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right)}^{2}}-2x\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right)+{{y}^{2}}+{{\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)}^{2}}-2y\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\].
\[\Rightarrow G{{O}^{2}}={{x}^{2}}+{{y}^{2}}+\left( \dfrac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+2{{x}_{1}}{{x}_{2}}+2{{x}_{2}}{{x}_{3}}+2{{x}_{1}}{{x}_{3}}+2{{y}_{1}}{{y}_{2}}+2{{y}_{2}}{{y}_{3}}+2{{y}_{1}}{{y}_{3}}}{9} \right)-\left( \dfrac{2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)+2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)}{3} \right)\].
\[\Rightarrow 3G{{O}^{2}}=3\left( {{x}^{2}}+{{y}^{2}} \right)+\left( \dfrac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+2{{x}_{1}}{{x}_{2}}+2{{x}_{2}}{{x}_{3}}+2{{x}_{1}}{{x}_{3}}+2{{y}_{1}}{{y}_{2}}+2{{y}_{2}}{{y}_{3}}+2{{y}_{1}}{{y}_{3}}}{3} \right)-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)\].
Using equation (2), we get
$G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}=3\left( {{x}^{2}}+{{y}^{2}} \right)+\left( \dfrac{3\left( x_{1}^{2}+y_{1}^{2} \right)+3\left( x_{2}^{2}+y_{2}^{2} \right)+3\left( x_{3}^{2}+y_{3}^{2} \right)}{3} \right)-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)$.
$\Rightarrow G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}=3\left( {{x}^{2}}+{{y}^{2}} \right)+x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2}-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)$.
From equation (4), we get $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$ ---(5).
From equations (3) and (5), we have proved $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=B{{C}^{2}}+C{{A}^{2}}+A{{B}^{2}}$ and
$\Rightarrow O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$.
Note: We should not make calculation mistakes while solving this problem. We can consider the point O as origin $\left( 0,0 \right)$ while proving the result $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$ to reduce the confusion and for making the calculation easy. We can also use the length of the medians to prove the given results but it requires a huge amount of knowledge about the properties of medians and their lengths.
Complete step-by-step solution
According to the problem, G be the centroid of a triangle ABC and O be any other point. We need to prove $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=B{{C}^{2}}+C{{A}^{2}}+A{{B}^{2}}$ and $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$.

Let us assume the vertices A, B and C be $\left( {{x}_{1}},{{y}_{1}} \right)$, $\left( {{x}_{2}},{{y}_{2}} \right)$ and $\left( {{x}_{3}},{{y}_{3}} \right)$.
We know that the centroid G of a triangle is defined as $\dfrac{A+B+C}{3}$.
So, we get $G=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)$.
We know that the distance between two points $\left( a,b \right)$ and $\left( c,d \right)$ is defined as $\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{2}}}$.
So, we get $A{{B}^{2}}={{\left( \sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}} \right)}^{2}}$.
$\Rightarrow A{{B}^{2}}=x_{1}^{2}+x_{2}^{2}-2{{x}_{1}}{{x}_{2}}+y_{1}^{2}+y_{2}^{2}-2{{y}_{1}}{{y}_{2}}$.
$\Rightarrow A{{B}^{2}}=\left( x_{1}^{2}+x_{2}^{2} \right)+\left( y_{1}^{2}+y_{2}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)$.
Similarly, we get $B{{C}^{2}}=\left( x_{2}^{2}+x_{3}^{2} \right)+\left( y_{2}^{2}+y_{3}^{2} \right)-2\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)$ and $C{{A}^{2}}=\left( x_{3}^{2}+x_{1}^{2} \right)+\left( y_{3}^{2}+y_{1}^{2} \right)-2\left( {{x}_{3}}{{x}_{1}}+{{y}_{3}}{{y}_{1}} \right)$.
Let us consider $A{{B}^{2}}+B{{C}^{2}}+C{{A}^{2}}$.
\[\Rightarrow A{{B}^{2}}+B{{C}^{2}}+C{{A}^{2}}=2\left( x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \right)+2\left( y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+{{x}_{3}}{{x}_{1}}+{{y}_{1}}{{y}_{2}}+{{y}_{2}}{{y}_{3}}+{{y}_{3}}{{y}_{1}} \right)\]---(1).
Now, let us find $G{{A}^{2}}$, $G{{B}^{2}}$ and $G{{C}^{2}}$.
So, we get \[G{{A}^{2}}={{\left( \sqrt{{{\left( {{x}_{1}}-\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right) \right)}^{2}}+{{\left( {{y}_{1}}-\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right)}^{2}}} \right)}^{2}}\].
\[\Rightarrow G{{A}^{2}}={{\left( \dfrac{2{{x}_{1}}-{{x}_{2}}-{{x}_{3}}}{3} \right)}^{2}}+{{\left( \dfrac{2{{y}_{1}}-{{y}_{2}}-{{y}_{3}}}{3} \right)}^{2}}\].
\[\Rightarrow G{{A}^{2}}=\left( \dfrac{4x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4{{x}_{1}}{{x}_{2}}+2{{x}_{2}}{{x}_{3}}-4{{x}_{1}}{{x}_{3}}}{9} \right)+\left(\dfrac{4y_{1}^{2}+y_{2}^{2}+y_{3}^{2}-4{{y}_{1}}{{y}_{2}}-2{{y}_{2}}{{y}_{3}}-4{{y}_{1}}{{y}_{3}}}{9} \right)\].
\[\Rightarrow G{{A}^{2}}=\left( \dfrac{4\left( x_{1}^{2}+y_{1}^{2} \right)+\left( x_{2}^{2}+y_{2}^{2} \right)+\left( x_{3}^{2}+y_{3}^{2} \right)-4\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)+2\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-4\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)\].
Similarly, we get \[G{{B}^{2}}=\left( \dfrac{\left( x_{1}^{2}+y_{1}^{2} \right)+4\left( x_{2}^{2}+y_{2}^{2} \right)+\left( x_{3}^{2}+y_{3}^{2} \right)-4\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-4\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)+2\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)\],
\[\Rightarrow G{{C}^{2}}=\left( \dfrac{\left( x_{1}^{2}+y_{1}^{2} \right)+\left( x_{2}^{2}+y_{2}^{2} \right)+4\left( x_{3}^{2}+y_{3}^{2} \right)+2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-4\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-4\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)\].
Now, let us consider $G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}$.
$G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}=\left( \dfrac{6\left( x_{1}^{2}+y_{1}^{2} \right)+6\left( x_{2}^{2}+y_{2}^{2} \right)+6\left( x_{3}^{2}+y_{3}^{2} \right)-6\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-6\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-6\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{9} \right)$.
$\Rightarrow G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}=\left( \dfrac{2\left( x_{1}^{2}+y_{1}^{2} \right)+2\left( x_{2}^{2}+y_{2}^{2} \right)+2\left( x_{3}^{2}+y_{3}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}} \right)-2\left( {{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}} \right)-2\left( {{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)}{3} \right)$---(2).
$\Rightarrow 3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=2\left( x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2} \right)-2\left( {{x}_{1}}{{x}_{2}}+{{y}_{1}}{{y}_{2}}+{{x}_{2}}{{x}_{3}}+{{y}_{2}}{{y}_{3}}+{{x}_{1}}{{x}_{3}}+{{y}_{1}}{{y}_{3}} \right)$.
From equation (1), we get $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=A{{B}^{2}}+B{{C}^{2}}+A{{C}^{2}}$.
So, we have proved $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=A{{B}^{2}}+B{{C}^{2}}+A{{C}^{2}}$ ---(3).
Now, let us assume the point O be $\left( x,y \right)$.
Now, let us find $O{{A}^{2}}$.
So, we get $O{{A}^{2}}={{\left( \sqrt{{{\left( {{x}_{1}}-x \right)}^{2}}+{{\left( {{y}_{1}}-y \right)}^{2}}} \right)}^{2}}$.
$\Rightarrow O{{A}^{2}}=x_{1}^{2}+{{x}^{2}}-2x{{x}_{1}}+y_{1}^{2}+{{y}^{2}}-2y{{y}_{1}}$.
$\Rightarrow O{{A}^{2}}=\left( x_{1}^{2}+y_{1}^{2} \right)+\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{1}}+y{{y}_{1}} \right)$.
Similarly, we get $O{{B}^{2}}=\left( x_{2}^{2}+y_{2}^{2} \right)+\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{2}}+y{{y}_{2}} \right)$ and $O{{A}^{2}}=\left( x_{3}^{2}+y_{3}^{2} \right)+\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{3}}+y{{y}_{3}} \right)$.
Let us consider $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}$.
\[\Rightarrow O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=\left( x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \right)+3\left( {{x}^{2}}+{{y}^{2}} \right)-2\left( x{{x}_{1}}+x{{x}_{2}}+x{{x}_{3}}+y{{y}_{1}}+y{{y}_{2}}+y{{y}_{3}} \right)\].
\[\Rightarrow O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=\left( x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \right)+3\left( {{x}^{2}}+{{y}^{2}} \right)-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)\]---(4).
Now, let us find $G{{O}^{2}}$.
\[\Rightarrow G{{O}^{2}}={{\left( \sqrt{{{\left( x-\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right) \right)}^{2}}+{{\left( y-\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) \right)}^{2}}} \right)}^{2}}\].
\[\Rightarrow G{{O}^{2}}={{x}^{2}}+{{\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right)}^{2}}-2x\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3} \right)+{{y}^{2}}+{{\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)}^{2}}-2y\left( \dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\].
\[\Rightarrow G{{O}^{2}}={{x}^{2}}+{{y}^{2}}+\left( \dfrac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+2{{x}_{1}}{{x}_{2}}+2{{x}_{2}}{{x}_{3}}+2{{x}_{1}}{{x}_{3}}+2{{y}_{1}}{{y}_{2}}+2{{y}_{2}}{{y}_{3}}+2{{y}_{1}}{{y}_{3}}}{9} \right)-\left( \dfrac{2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)+2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)}{3} \right)\].
\[\Rightarrow 3G{{O}^{2}}=3\left( {{x}^{2}}+{{y}^{2}} \right)+\left( \dfrac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+2{{x}_{1}}{{x}_{2}}+2{{x}_{2}}{{x}_{3}}+2{{x}_{1}}{{x}_{3}}+2{{y}_{1}}{{y}_{2}}+2{{y}_{2}}{{y}_{3}}+2{{y}_{1}}{{y}_{3}}}{3} \right)-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)\].
Using equation (2), we get
$G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}=3\left( {{x}^{2}}+{{y}^{2}} \right)+\left( \dfrac{3\left( x_{1}^{2}+y_{1}^{2} \right)+3\left( x_{2}^{2}+y_{2}^{2} \right)+3\left( x_{3}^{2}+y_{3}^{2} \right)}{3} \right)-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)$.
$\Rightarrow G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}=3\left( {{x}^{2}}+{{y}^{2}} \right)+x_{1}^{2}+y_{1}^{2}+x_{2}^{2}+y_{2}^{2}+x_{3}^{2}+y_{3}^{2}-2x\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)-2y\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)$.
From equation (4), we get $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$ ---(5).
From equations (3) and (5), we have proved $3\left( G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}} \right)=B{{C}^{2}}+C{{A}^{2}}+A{{B}^{2}}$ and
$\Rightarrow O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$.
Note: We should not make calculation mistakes while solving this problem. We can consider the point O as origin $\left( 0,0 \right)$ while proving the result $O{{A}^{2}}+O{{B}^{2}}+O{{C}^{2}}=G{{A}^{2}}+G{{B}^{2}}+G{{C}^{2}}+3G{{O}^{2}}$ to reduce the confusion and for making the calculation easy. We can also use the length of the medians to prove the given results but it requires a huge amount of knowledge about the properties of medians and their lengths.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How do you prove that the diagonals of a rectangle class 10 maths CBSE
