
If $ f(x) = \dfrac{{[{x^2} - x]}}{{[{x^2} + 2x]}} $ , find the domain of\[f{\text{ }}\left( x \right)\]. Show that f is one - one .
Answer
508.2k+ views
Hint: We have to find the domain of the function f (x)\[f{\text{ }}\left( x \right)\]and show that the function f is one - one . We solve this question using the concepts of functions . We will find for what value of $ x $ the function is defined . We should also have the knowledge of one - one function .
Complete step-by-step answer:
Given :
For domain of function \[f{\text{ }}\left( x \right)\] :
$ f(x) = \dfrac{{[{x^2} - x]}}{{[{x^2} + 2x]}} $
The domain of function is the value of x for which function \[f{\text{ }}\left( x \right)\] is defined .
For the function to be defined, the denominator should not be equal to zero for any value of $ x $ .
I.e.
$ [{x^2} + 2x] \ne 0 $
Taking $ x $ common , we get
\[x{\text{ }} \times {\text{ }}\left[ {{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right]{\text{ }} \ne {\text{ }}0\]
So,
\[x{\text{ }} \ne {\text{ }}0\]or \[\left[ {{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right]{\text{ }} \ne {\text{ }}0\]
\[x{\text{ }} \ne {\text{ }} - 2\]or \[x{\text{ }} \ne {\text{ }}0\]
The function \[f\left( x \right)\] is defined for every value except for \[x{\text{ }} = {\text{ }}0\]and\[x{\text{ }} = {\text{ }} - {\text{ }}2\] .
Hence , the domain of the function \[f{\text{ }}\left( x \right)\]is\[R{\text{ }} - {\text{ }}\left\{ {{\text{ }}0{\text{ }},{\text{ }} - 2{\text{ }}} \right\}\] .
Where R is the set of real numbers .
To show that function is one - one :
A function is said to be a one - one function if we consider that \[f\left( {{x_1}} \right){\text{ }} = {\text{ }}f\left( {{x_2}} \right)\] and we get the result as \[x_1 = x_2\] .
Proof :
Let us consider that \[f\left( {{x_1}} \right){\text{ }} = {\text{ }}f\left( {{x_2}} \right)\]
Then , we get
$ \dfrac{{[{{({x_1})}^2} - {x_1}]}}{{[{{({x_1})}^2} + 2({x_1})]}} = \dfrac{{[{{({x_2})}^2} - {x_2}]}}{{[{{({x_2})}^2} + 2({x_2})]}} $
Cross multiplying the terms , we get
$ [{({x_1})^2} - {x_1}] \times [{({x_2})^2} + 2({x_2})] = [{({x_2})^2} - {x_2}] \times [{({x_1})^2} + 2({x_1})] $
Expanding the terms , we get
$ {({x_1})^2} \times {({x_2})^2} - {({x_2})^2} \times ({x_1}) + 2({x_2}) \times {({x_1})^2} - 2({x_1}) \times ({x_1}) = {({x_1})^2} \times {({x_2})^2} - {({x_1})^2} \times ({x_2}) + 2({x_1}) \times {({x_2})^2} - 2({x_1}) \times ({x_1}) $
Cancelling the terms , we get
$ - {({x_2})^2} \times ({x_1}) + 2({x_2}) \times {({x_1})^2} = - {({x_1})^2} \times ({x_2}) + 2({x_1}) \times {({x_2})^2}3({x_2}) \times {({x_1})^2} = 3{({x_2})^2} \times ({x_1}) $
Also , the expression can be written as
$ ({x_2}) \times {({x_1})^2} - {({x_2})^2} \times ({x_1}) = 0 $
Taking \[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right)\]common , we get
\[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }}\left[ {{\text{ }}\left( {{x_1}} \right){\text{ }} - {\text{ }}\left( {{x_2}} \right){\text{ }}} \right]{\text{ }} = {\text{ }}0\]
So ,
\[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0{\text{ }}or{\text{ }}\left( {{x_1}} \right){\text{ }} - {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\]
Neglecting \[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\] as if \[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\] then either \[\left( {{x_1}} \right){\text{ }} = {\text{ }}0\]or\[\left( {{x_2}} \right){\text{ }} = {\text{ }}0\] , which is not possible as \[x{\text{ }} \ne {\text{ }}0\] .
Prove above that the domain of \[f\left( x \right){\text{ }},{\text{ }}x\] cannot be zero .
So ,
\[\left( {{x_1}} \right){\text{ }} - {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\]
Hence ,
\[\left( {{x_1}} \right){\text{ = }}\left( {{x_2}} \right)\]
Hence proved that the function is a one - one function .
Note: A function \[f{\text{ }}:{\text{ }}X{\text{ }} \geqslant {\text{ }}Y\]is defined to be one - one ( or injective ) , if the images of distinct elements of X under f are distinct , I.e. for every \[{x_1}{\text{ }},{\text{ }}{x_2} \in X{\text{ }},{\text{ }}f\left( {{x_1}} \right){\text{ }} = {\text{ }}f\left( {{x_2}} \right)\] implies that \[\left( {{x_1}} \right){\text{ = }}\left( {{x_2}} \right)\] . Otherwise , f is called many - one .
A function \[f{\text{ }}:{\text{ }}X{\text{ }} \geqslant {\text{ }}Y\] is defined to be onto ( or surjective ) , if every images of element of Y is the image of some element of X under f i.e. for every \[y \in Y\] , there exist an element x in X such that \[\;f{\text{ }}\left( x \right){\text{ }} = {\text{ }}y\] .
Complete step-by-step answer:
Given :
For domain of function \[f{\text{ }}\left( x \right)\] :
$ f(x) = \dfrac{{[{x^2} - x]}}{{[{x^2} + 2x]}} $
The domain of function is the value of x for which function \[f{\text{ }}\left( x \right)\] is defined .
For the function to be defined, the denominator should not be equal to zero for any value of $ x $ .
I.e.
$ [{x^2} + 2x] \ne 0 $
Taking $ x $ common , we get
\[x{\text{ }} \times {\text{ }}\left[ {{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right]{\text{ }} \ne {\text{ }}0\]
So,
\[x{\text{ }} \ne {\text{ }}0\]or \[\left[ {{\text{ }}x{\text{ }} + {\text{ }}2{\text{ }}} \right]{\text{ }} \ne {\text{ }}0\]
\[x{\text{ }} \ne {\text{ }} - 2\]or \[x{\text{ }} \ne {\text{ }}0\]
The function \[f\left( x \right)\] is defined for every value except for \[x{\text{ }} = {\text{ }}0\]and\[x{\text{ }} = {\text{ }} - {\text{ }}2\] .
Hence , the domain of the function \[f{\text{ }}\left( x \right)\]is\[R{\text{ }} - {\text{ }}\left\{ {{\text{ }}0{\text{ }},{\text{ }} - 2{\text{ }}} \right\}\] .
Where R is the set of real numbers .
To show that function is one - one :
A function is said to be a one - one function if we consider that \[f\left( {{x_1}} \right){\text{ }} = {\text{ }}f\left( {{x_2}} \right)\] and we get the result as \[x_1 = x_2\] .
Proof :
Let us consider that \[f\left( {{x_1}} \right){\text{ }} = {\text{ }}f\left( {{x_2}} \right)\]
Then , we get
$ \dfrac{{[{{({x_1})}^2} - {x_1}]}}{{[{{({x_1})}^2} + 2({x_1})]}} = \dfrac{{[{{({x_2})}^2} - {x_2}]}}{{[{{({x_2})}^2} + 2({x_2})]}} $
Cross multiplying the terms , we get
$ [{({x_1})^2} - {x_1}] \times [{({x_2})^2} + 2({x_2})] = [{({x_2})^2} - {x_2}] \times [{({x_1})^2} + 2({x_1})] $
Expanding the terms , we get
$ {({x_1})^2} \times {({x_2})^2} - {({x_2})^2} \times ({x_1}) + 2({x_2}) \times {({x_1})^2} - 2({x_1}) \times ({x_1}) = {({x_1})^2} \times {({x_2})^2} - {({x_1})^2} \times ({x_2}) + 2({x_1}) \times {({x_2})^2} - 2({x_1}) \times ({x_1}) $
Cancelling the terms , we get
$ - {({x_2})^2} \times ({x_1}) + 2({x_2}) \times {({x_1})^2} = - {({x_1})^2} \times ({x_2}) + 2({x_1}) \times {({x_2})^2}3({x_2}) \times {({x_1})^2} = 3{({x_2})^2} \times ({x_1}) $
Also , the expression can be written as
$ ({x_2}) \times {({x_1})^2} - {({x_2})^2} \times ({x_1}) = 0 $
Taking \[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right)\]common , we get
\[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }}\left[ {{\text{ }}\left( {{x_1}} \right){\text{ }} - {\text{ }}\left( {{x_2}} \right){\text{ }}} \right]{\text{ }} = {\text{ }}0\]
So ,
\[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0{\text{ }}or{\text{ }}\left( {{x_1}} \right){\text{ }} - {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\]
Neglecting \[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\] as if \[\left( {{x_1}} \right){\text{ }} \times {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\] then either \[\left( {{x_1}} \right){\text{ }} = {\text{ }}0\]or\[\left( {{x_2}} \right){\text{ }} = {\text{ }}0\] , which is not possible as \[x{\text{ }} \ne {\text{ }}0\] .
Prove above that the domain of \[f\left( x \right){\text{ }},{\text{ }}x\] cannot be zero .
So ,
\[\left( {{x_1}} \right){\text{ }} - {\text{ }}\left( {{x_2}} \right){\text{ }} = {\text{ }}0\]
Hence ,
\[\left( {{x_1}} \right){\text{ = }}\left( {{x_2}} \right)\]
Hence proved that the function is a one - one function .
Note: A function \[f{\text{ }}:{\text{ }}X{\text{ }} \geqslant {\text{ }}Y\]is defined to be one - one ( or injective ) , if the images of distinct elements of X under f are distinct , I.e. for every \[{x_1}{\text{ }},{\text{ }}{x_2} \in X{\text{ }},{\text{ }}f\left( {{x_1}} \right){\text{ }} = {\text{ }}f\left( {{x_2}} \right)\] implies that \[\left( {{x_1}} \right){\text{ = }}\left( {{x_2}} \right)\] . Otherwise , f is called many - one .
A function \[f{\text{ }}:{\text{ }}X{\text{ }} \geqslant {\text{ }}Y\] is defined to be onto ( or surjective ) , if every images of element of Y is the image of some element of X under f i.e. for every \[y \in Y\] , there exist an element x in X such that \[\;f{\text{ }}\left( x \right){\text{ }} = {\text{ }}y\] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

