
If for any 2 × 2 square matrix A, A (adjA) = $\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]$ then write the value of det [A].
Answer
511.2k+ views
Hint: Take a general 2 × 2 square matrix A = $\left[ \begin{matrix}
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ then find its adjoint and multiply both of them to get the solution.
Complete step by step solution: Given: A (adjA) = $\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]$
First of all we should know how to find adjoint of a given matrix.
Let $\text{A}=[{{\text{Q}}_{\text{ij}}}]$ be a square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by adj A.
so now, let A = $\left[ \begin{matrix}
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ be a 2 × 2 square matrix.
We know,
Cofactor of ${{\text{a}}_{\text{ij}}}={{(-1)}^{\text{i}+\text{j}}}$ × the number we get by removing column and row of designated element in a matrix
Now, cofactor of Q = ${{(-1)}^{\text{1}+\text{1}}}$d = d
cofactor of b = ${{(-1)}^{\text{1}+\text{2}}}$c = −c
cofactor of c = ${{(-1)}^{\text{2}+\text{1}}}$b = −b
and cofactor of d = ${{(-1)}^{\text{2}+\text{2}}}$Q = a
Now, cofactor matrix of $\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$
Now adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$ {since adjA is transpose of co-factor matrix}
so, adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
Now we will have to find A(adj A)
$\text{A}(\text{adjA})=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & -\text{ab+ab} \\
\text{cd}-\text{cd} & -\text{bc+ad} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & \text{O} \\
\text{O} & \text{ad}-\text{bc} \\
\end{matrix} \right]\]
From here on comparing the elements we get
ad − bd = 8 1
Now our objective is to find det A.
So, $\det \text{A}=\left| \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right|$
= ad − bc
Now, from equation 1
ad − bc = 8 which is equal to the value of det A.
so, |A| = 8 answer.
Note: Students often make mistakes in the part where two matrix are multiplied, so be careful with it.
There is a direct formula to calculate A ⋅ adjA which is
A ⋅ |adjA| = |A| ⋅ I
so putting value in these, we can also solve the problem.
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ then find its adjoint and multiply both of them to get the solution.
Complete step by step solution: Given: A (adjA) = $\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]$
First of all we should know how to find adjoint of a given matrix.
Let $\text{A}=[{{\text{Q}}_{\text{ij}}}]$ be a square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by adj A.
so now, let A = $\left[ \begin{matrix}
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ be a 2 × 2 square matrix.
We know,
Cofactor of ${{\text{a}}_{\text{ij}}}={{(-1)}^{\text{i}+\text{j}}}$ × the number we get by removing column and row of designated element in a matrix
Now, cofactor of Q = ${{(-1)}^{\text{1}+\text{1}}}$d = d
cofactor of b = ${{(-1)}^{\text{1}+\text{2}}}$c = −c
cofactor of c = ${{(-1)}^{\text{2}+\text{1}}}$b = −b
and cofactor of d = ${{(-1)}^{\text{2}+\text{2}}}$Q = a
Now, cofactor matrix of $\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$
Now adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$ {since adjA is transpose of co-factor matrix}
so, adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
Now we will have to find A(adj A)
$\text{A}(\text{adjA})=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & -\text{ab+ab} \\
\text{cd}-\text{cd} & -\text{bc+ad} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & \text{O} \\
\text{O} & \text{ad}-\text{bc} \\
\end{matrix} \right]\]
From here on comparing the elements we get
ad − bd = 8 1
Now our objective is to find det A.
So, $\det \text{A}=\left| \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right|$
= ad − bc
Now, from equation 1
ad − bc = 8 which is equal to the value of det A.
so, |A| = 8 answer.
Note: Students often make mistakes in the part where two matrix are multiplied, so be careful with it.
There is a direct formula to calculate A ⋅ adjA which is
A ⋅ |adjA| = |A| ⋅ I
so putting value in these, we can also solve the problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
