
If for any 2 × 2 square matrix A, A (adjA) = $\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]$ then write the value of det [A].
Answer
574.2k+ views
Hint: Take a general 2 × 2 square matrix A = $\left[ \begin{matrix}
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ then find its adjoint and multiply both of them to get the solution.
Complete step by step solution: Given: A (adjA) = $\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]$
First of all we should know how to find adjoint of a given matrix.
Let $\text{A}=[{{\text{Q}}_{\text{ij}}}]$ be a square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by adj A.
so now, let A = $\left[ \begin{matrix}
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ be a 2 × 2 square matrix.
We know,
Cofactor of ${{\text{a}}_{\text{ij}}}={{(-1)}^{\text{i}+\text{j}}}$ × the number we get by removing column and row of designated element in a matrix
Now, cofactor of Q = ${{(-1)}^{\text{1}+\text{1}}}$d = d
cofactor of b = ${{(-1)}^{\text{1}+\text{2}}}$c = −c
cofactor of c = ${{(-1)}^{\text{2}+\text{1}}}$b = −b
and cofactor of d = ${{(-1)}^{\text{2}+\text{2}}}$Q = a
Now, cofactor matrix of $\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$
Now adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$ {since adjA is transpose of co-factor matrix}
so, adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
Now we will have to find A(adj A)
$\text{A}(\text{adjA})=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & -\text{ab+ab} \\
\text{cd}-\text{cd} & -\text{bc+ad} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & \text{O} \\
\text{O} & \text{ad}-\text{bc} \\
\end{matrix} \right]\]
From here on comparing the elements we get
ad − bd = 8 1
Now our objective is to find det A.
So, $\det \text{A}=\left| \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right|$
= ad − bc
Now, from equation 1
ad − bc = 8 which is equal to the value of det A.
so, |A| = 8 answer.
Note: Students often make mistakes in the part where two matrix are multiplied, so be careful with it.
There is a direct formula to calculate A ⋅ adjA which is
A ⋅ |adjA| = |A| ⋅ I
so putting value in these, we can also solve the problem.
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ then find its adjoint and multiply both of them to get the solution.
Complete step by step solution: Given: A (adjA) = $\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]$
First of all we should know how to find adjoint of a given matrix.
Let $\text{A}=[{{\text{Q}}_{\text{ij}}}]$ be a square matrix of order n. The adjoint of a matrix A is the transpose of the cofactor matrix of A. It is denoted by adj A.
so now, let A = $\left[ \begin{matrix}
\text{q} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]$ be a 2 × 2 square matrix.
We know,
Cofactor of ${{\text{a}}_{\text{ij}}}={{(-1)}^{\text{i}+\text{j}}}$ × the number we get by removing column and row of designated element in a matrix
Now, cofactor of Q = ${{(-1)}^{\text{1}+\text{1}}}$d = d
cofactor of b = ${{(-1)}^{\text{1}+\text{2}}}$c = −c
cofactor of c = ${{(-1)}^{\text{2}+\text{1}}}$b = −b
and cofactor of d = ${{(-1)}^{\text{2}+\text{2}}}$Q = a
Now, cofactor matrix of $\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$
Now adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{c} \\
-\text{b} & \text{a} \\
\end{matrix} \right]$ {since adjA is transpose of co-factor matrix}
so, adj$\text{A}=\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
Now we will have to find A(adj A)
$\text{A}(\text{adjA})=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]$
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right]*\left[ \begin{matrix}
\text{d} & -\text{b} \\
-\text{c} & \text{a} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & -\text{ab+ab} \\
\text{cd}-\text{cd} & -\text{bc+ad} \\
\end{matrix} \right]\]
⇒ \[\left[ \begin{matrix}
8 & 0 \\
0 & 8 \\
\end{matrix} \right]=\left[ \begin{matrix}
\text{ad}-\text{bc} & \text{O} \\
\text{O} & \text{ad}-\text{bc} \\
\end{matrix} \right]\]
From here on comparing the elements we get
ad − bd = 8 1
Now our objective is to find det A.
So, $\det \text{A}=\left| \begin{matrix}
\text{a} & \text{b} \\
\text{c} & \text{d} \\
\end{matrix} \right|$
= ad − bc
Now, from equation 1
ad − bc = 8 which is equal to the value of det A.
so, |A| = 8 answer.
Note: Students often make mistakes in the part where two matrix are multiplied, so be careful with it.
There is a direct formula to calculate A ⋅ adjA which is
A ⋅ |adjA| = |A| ⋅ I
so putting value in these, we can also solve the problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

