
If $ f(n) = 2\cos nx\,\forall \,n\, \in \,N,\,then\,f(1)f(n + 1) - f(n) $ is equal to
(A) $ f(n + 3) $
(B) $ f(n + 2) $
(C) $ f(n + 1)f(2) $
(D) $ f(n + 2)(f(2) $
Answer
581.7k+ views
Hint: First we used a given function f(n) to find values of different functions like f(1), f(n+1) and f(n) and then using these functions together proceeded with some trigonometric formulas to do simplification and get required correct option.
$ 2\cos A.\cos B = \cos (A + B) + \cos (A - B),\,\, $ and cosine is an even function therefore $ \cos ( - \theta ) = \cos \theta $
Complete step-by-step answer:
Here, given function in problems is
$ f(n) = 2\cos nx $
Then to find value of $ f(1)f(n + 1) - f(n) $ we calculate, first values of f (1), f (n+1) and f(n) and then using these values to
Check which one of the given options is correct.
$ \therefore $ f (1) = $ 2\cos (1.x) $
$ \Rightarrow f(1) = 2\cos x $ …… (i)
Now, calculating f (n+1) we have
$ f(n + 1) = 2\cos (n + 1)x $ ……. (ii)
And $ f(n) = 2\cos nx $ ……. (iii)
Using from (i), (ii) and (iii) we have
$ f(1)f(n + 1) - f(n) = 2\cos x.2\cos (n + 1)x - 2\cos nx $
$
= 4.\cos x.\cos (n + 1)x - 2\cos nx \\
= 2\left\{ {2\cos x.\cos (n + 1)x} \right\} - 2\cos nx \\
= 2\left\{ {\cos (x + nx + x) + \cos (x - nx - x} \right\} - 2\cos nx \\
= 2\left\{ {\cos (n + 2)x + \cos ( - nx)} \right\} - 2\cos nx \\
= 2\{ \cos (n + 2)x + \cos (nx)\} - 2\cos nx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\,\because \cos ( - nx) = \cos nx} \right) \\
= 2\cos (n + 2)x + 2\cos nx - 2\cos nx \\
= 2\cos (n + 2)x \\
$
$ \Rightarrow f(1)f(n + 1) - f(n) = 2\cos (n + 2)x $
Therefore, from above we see that the value of $ f(1)f(n + 1) - f(n) $ is $ 2\cos (n + 2)x $ . Which can be written as $ f(n + 2) $ .
Hence, from given four options we see that option (B) is the correct option.
So, the correct answer is “Option B”.
Note: As, we know that every function given values according to domains we are taking. So, changing the domain for the same functions given different results. Hence, to get different values for the same function we just replace the given function with required domains to get required results.
$ 2\cos A.\cos B = \cos (A + B) + \cos (A - B),\,\, $ and cosine is an even function therefore $ \cos ( - \theta ) = \cos \theta $
Complete step-by-step answer:
Here, given function in problems is
$ f(n) = 2\cos nx $
Then to find value of $ f(1)f(n + 1) - f(n) $ we calculate, first values of f (1), f (n+1) and f(n) and then using these values to
Check which one of the given options is correct.
$ \therefore $ f (1) = $ 2\cos (1.x) $
$ \Rightarrow f(1) = 2\cos x $ …… (i)
Now, calculating f (n+1) we have
$ f(n + 1) = 2\cos (n + 1)x $ ……. (ii)
And $ f(n) = 2\cos nx $ ……. (iii)
Using from (i), (ii) and (iii) we have
$ f(1)f(n + 1) - f(n) = 2\cos x.2\cos (n + 1)x - 2\cos nx $
$
= 4.\cos x.\cos (n + 1)x - 2\cos nx \\
= 2\left\{ {2\cos x.\cos (n + 1)x} \right\} - 2\cos nx \\
= 2\left\{ {\cos (x + nx + x) + \cos (x - nx - x} \right\} - 2\cos nx \\
= 2\left\{ {\cos (n + 2)x + \cos ( - nx)} \right\} - 2\cos nx \\
= 2\{ \cos (n + 2)x + \cos (nx)\} - 2\cos nx\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\,\because \cos ( - nx) = \cos nx} \right) \\
= 2\cos (n + 2)x + 2\cos nx - 2\cos nx \\
= 2\cos (n + 2)x \\
$
$ \Rightarrow f(1)f(n + 1) - f(n) = 2\cos (n + 2)x $
Therefore, from above we see that the value of $ f(1)f(n + 1) - f(n) $ is $ 2\cos (n + 2)x $ . Which can be written as $ f(n + 2) $ .
Hence, from given four options we see that option (B) is the correct option.
So, the correct answer is “Option B”.
Note: As, we know that every function given values according to domains we are taking. So, changing the domain for the same functions given different results. Hence, to get different values for the same function we just replace the given function with required domains to get required results.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

