
If $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ , and $f\left( 0 \right)=1$, then
(a) $f\left( x \right)$ is decreasing in $\left( 0,\infty \right)$
(b) ${f}'\left( x \right)<{{e}^{2x}}$ in $\left( 0,\infty \right)$
(c) $f\left( x \right)$ is increasing in $\left( 0,\infty \right)$
(d) $f\left( x \right)>{{e}^{2x}}$ in $\left( 0,\infty \right)$
This question can have multiple correct options.
Answer
575.4k+ views
Hint: First we will show that \[{{e}^{-2x}}f\left( x \right)\] is an increasing function from the data given in the question. Then we will try to see which relation among ${f}'\left( x \right)<{{e}^{2x}}$and $f\left( x \right)>{{e}^{2x}}$turns out to be true. Then we will try to find if f(x) is an increasing or decreasing function in $\left( 0,\infty \right)$.
Complete step-by-step answer:
We know, $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ and $f\left( 0 \right)=1$.
We also know that f(x) is an increasing function if $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$ when ${{x}_{1}}\le {{x}_{2}}$.
Let us recall a few differentiation formulas and concepts according to the question:
(i) \[\dfrac{d}{dx}\left[ {{e}^{mx}} \right]=m{{e}^{mx}}\]
(ii) \[\dfrac{d}{dx}\left[ uv \right]=u\dfrac{d}{dx}\left[ v \right]+v\dfrac{d}{dx}\left[ u \right]\] where u and v are functions of x.
(iii) if \[\dfrac{d}{dx}\left[ h\left( x \right) \right]>0\] where h(x) is a function of x, then h(x) is an increasing function.
Now, from the data given in question,
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right) \\
& \Rightarrow {f}'\left( x \right)-2f\left( x \right)>0 \\
\end{align}$
Multiplying this equation with ${{e}^{-2x}}$ , we get
\[\begin{align}
& {{e}^{-2x}}\left[ {f}'\left( x \right)-2f\left( x \right) \right]>{{e}^{-2x}}\left[ 0 \right] \\
& \Rightarrow {{e}^{-2x}}{f}'\left( x \right)-2{{e}^{-2x}}f\left( x \right)>0 \\
& \Rightarrow {{e}^{-2x}}\dfrac{d}{dx}\left[ f\left( x \right) \right]+\dfrac{d}{dx}\left[ {{e}^{-2x}} \right]f\left( x \right)>0\text{ from }\left( i \right) \\
& \Rightarrow \dfrac{d}{dx}\left[ {{e}^{-2x}}f\left( x \right) \right]>0\text{ from }\left( ii \right) \\
\end{align}\]
From (iii), \[{{e}^{-2x}}f\left( x \right)\] is an increasing function.
Let us assume \[g\left( x \right)={{e}^{-2x}}f\left( x \right)\]
Then for $x=0$ ,
\[\begin{align}
& g\left( 0 \right)={{e}^{-2\cdot 0}}f\left( 0 \right) \\
& ={{e}^{0}}\cdot 1 \\
& =1\text{ }\left( \because {{e}^{0}}=1 \right)
\end{align}\]
And for $x>0$
\[g\left( x \right)>g\left( 0 \right)\] since g(x) is an increasing function in $\left( 0,\infty \right)$
\[\begin{align}
& \Rightarrow {{e}^{-2x}}f\left( x \right)>1 \\
& \Rightarrow f\left( x \right)>\dfrac{1}{{{e}^{-2x}}} \\
& \Rightarrow f\left( x \right)>{{e}^{2x}}\text{ }\ldots \left( iv \right) \\
\end{align}\]
Thus, option (d) is correct.
We know from the question that
${f}'\left( x \right)>2f\left( x \right)$
Putting the value of equation (iv) in above expression, we get
${f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}\text{ }\ldots (v)$
We know that the exponential function ${{e}^{x}}$ is an increasing function in $\left( 0,\infty \right)$
Thus, above expression becomes
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}>0 \\
& \Rightarrow {f}'\left( x \right)>0 \\
\end{align}$
From (iii), $f\left( x \right)$ is an increasing function in $\left( 0,\infty \right)$
Thus, option (c) is also correct.
So, the correct answers are “Option C and D”.
Note: Since f(x) is an increasing function in $\left( 0,\infty \right)$, it can not be decreasing at the same time in $\left( 0,\infty \right)$. Therefore, option (a) is wrong. And from expression (v), ${f}'\left( x \right)>{{e}^{2x}}$, which contradicts option (b). Thus, option (b) is also wrong.
Complete step-by-step answer:
We know, $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ and $f\left( 0 \right)=1$.
We also know that f(x) is an increasing function if $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$ when ${{x}_{1}}\le {{x}_{2}}$.
Let us recall a few differentiation formulas and concepts according to the question:
(i) \[\dfrac{d}{dx}\left[ {{e}^{mx}} \right]=m{{e}^{mx}}\]
(ii) \[\dfrac{d}{dx}\left[ uv \right]=u\dfrac{d}{dx}\left[ v \right]+v\dfrac{d}{dx}\left[ u \right]\] where u and v are functions of x.
(iii) if \[\dfrac{d}{dx}\left[ h\left( x \right) \right]>0\] where h(x) is a function of x, then h(x) is an increasing function.
Now, from the data given in question,
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right) \\
& \Rightarrow {f}'\left( x \right)-2f\left( x \right)>0 \\
\end{align}$
Multiplying this equation with ${{e}^{-2x}}$ , we get
\[\begin{align}
& {{e}^{-2x}}\left[ {f}'\left( x \right)-2f\left( x \right) \right]>{{e}^{-2x}}\left[ 0 \right] \\
& \Rightarrow {{e}^{-2x}}{f}'\left( x \right)-2{{e}^{-2x}}f\left( x \right)>0 \\
& \Rightarrow {{e}^{-2x}}\dfrac{d}{dx}\left[ f\left( x \right) \right]+\dfrac{d}{dx}\left[ {{e}^{-2x}} \right]f\left( x \right)>0\text{ from }\left( i \right) \\
& \Rightarrow \dfrac{d}{dx}\left[ {{e}^{-2x}}f\left( x \right) \right]>0\text{ from }\left( ii \right) \\
\end{align}\]
From (iii), \[{{e}^{-2x}}f\left( x \right)\] is an increasing function.
Let us assume \[g\left( x \right)={{e}^{-2x}}f\left( x \right)\]
Then for $x=0$ ,
\[\begin{align}
& g\left( 0 \right)={{e}^{-2\cdot 0}}f\left( 0 \right) \\
& ={{e}^{0}}\cdot 1 \\
& =1\text{ }\left( \because {{e}^{0}}=1 \right)
\end{align}\]
And for $x>0$
\[g\left( x \right)>g\left( 0 \right)\] since g(x) is an increasing function in $\left( 0,\infty \right)$
\[\begin{align}
& \Rightarrow {{e}^{-2x}}f\left( x \right)>1 \\
& \Rightarrow f\left( x \right)>\dfrac{1}{{{e}^{-2x}}} \\
& \Rightarrow f\left( x \right)>{{e}^{2x}}\text{ }\ldots \left( iv \right) \\
\end{align}\]
Thus, option (d) is correct.
We know from the question that
${f}'\left( x \right)>2f\left( x \right)$
Putting the value of equation (iv) in above expression, we get
${f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}\text{ }\ldots (v)$
We know that the exponential function ${{e}^{x}}$ is an increasing function in $\left( 0,\infty \right)$
Thus, above expression becomes
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}>0 \\
& \Rightarrow {f}'\left( x \right)>0 \\
\end{align}$
From (iii), $f\left( x \right)$ is an increasing function in $\left( 0,\infty \right)$
Thus, option (c) is also correct.
So, the correct answers are “Option C and D”.
Note: Since f(x) is an increasing function in $\left( 0,\infty \right)$, it can not be decreasing at the same time in $\left( 0,\infty \right)$. Therefore, option (a) is wrong. And from expression (v), ${f}'\left( x \right)>{{e}^{2x}}$, which contradicts option (b). Thus, option (b) is also wrong.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

