
If $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ , and $f\left( 0 \right)=1$, then
(a) $f\left( x \right)$ is decreasing in $\left( 0,\infty \right)$
(b) ${f}'\left( x \right)<{{e}^{2x}}$ in $\left( 0,\infty \right)$
(c) $f\left( x \right)$ is increasing in $\left( 0,\infty \right)$
(d) $f\left( x \right)>{{e}^{2x}}$ in $\left( 0,\infty \right)$
This question can have multiple correct options.
Answer
510.3k+ views
Hint: First we will show that \[{{e}^{-2x}}f\left( x \right)\] is an increasing function from the data given in the question. Then we will try to see which relation among ${f}'\left( x \right)<{{e}^{2x}}$and $f\left( x \right)>{{e}^{2x}}$turns out to be true. Then we will try to find if f(x) is an increasing or decreasing function in $\left( 0,\infty \right)$.
Complete step-by-step answer:
We know, $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ and $f\left( 0 \right)=1$.
We also know that f(x) is an increasing function if $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$ when ${{x}_{1}}\le {{x}_{2}}$.
Let us recall a few differentiation formulas and concepts according to the question:
(i) \[\dfrac{d}{dx}\left[ {{e}^{mx}} \right]=m{{e}^{mx}}\]
(ii) \[\dfrac{d}{dx}\left[ uv \right]=u\dfrac{d}{dx}\left[ v \right]+v\dfrac{d}{dx}\left[ u \right]\] where u and v are functions of x.
(iii) if \[\dfrac{d}{dx}\left[ h\left( x \right) \right]>0\] where h(x) is a function of x, then h(x) is an increasing function.
Now, from the data given in question,
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right) \\
& \Rightarrow {f}'\left( x \right)-2f\left( x \right)>0 \\
\end{align}$
Multiplying this equation with ${{e}^{-2x}}$ , we get
\[\begin{align}
& {{e}^{-2x}}\left[ {f}'\left( x \right)-2f\left( x \right) \right]>{{e}^{-2x}}\left[ 0 \right] \\
& \Rightarrow {{e}^{-2x}}{f}'\left( x \right)-2{{e}^{-2x}}f\left( x \right)>0 \\
& \Rightarrow {{e}^{-2x}}\dfrac{d}{dx}\left[ f\left( x \right) \right]+\dfrac{d}{dx}\left[ {{e}^{-2x}} \right]f\left( x \right)>0\text{ from }\left( i \right) \\
& \Rightarrow \dfrac{d}{dx}\left[ {{e}^{-2x}}f\left( x \right) \right]>0\text{ from }\left( ii \right) \\
\end{align}\]
From (iii), \[{{e}^{-2x}}f\left( x \right)\] is an increasing function.
Let us assume \[g\left( x \right)={{e}^{-2x}}f\left( x \right)\]
Then for $x=0$ ,
\[\begin{align}
& g\left( 0 \right)={{e}^{-2\cdot 0}}f\left( 0 \right) \\
& ={{e}^{0}}\cdot 1 \\
& =1\text{ }\left( \because {{e}^{0}}=1 \right)
\end{align}\]
And for $x>0$
\[g\left( x \right)>g\left( 0 \right)\] since g(x) is an increasing function in $\left( 0,\infty \right)$
\[\begin{align}
& \Rightarrow {{e}^{-2x}}f\left( x \right)>1 \\
& \Rightarrow f\left( x \right)>\dfrac{1}{{{e}^{-2x}}} \\
& \Rightarrow f\left( x \right)>{{e}^{2x}}\text{ }\ldots \left( iv \right) \\
\end{align}\]
Thus, option (d) is correct.
We know from the question that
${f}'\left( x \right)>2f\left( x \right)$
Putting the value of equation (iv) in above expression, we get
${f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}\text{ }\ldots (v)$
We know that the exponential function ${{e}^{x}}$ is an increasing function in $\left( 0,\infty \right)$
Thus, above expression becomes
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}>0 \\
& \Rightarrow {f}'\left( x \right)>0 \\
\end{align}$
From (iii), $f\left( x \right)$ is an increasing function in $\left( 0,\infty \right)$
Thus, option (c) is also correct.
So, the correct answers are “Option C and D”.
Note: Since f(x) is an increasing function in $\left( 0,\infty \right)$, it can not be decreasing at the same time in $\left( 0,\infty \right)$. Therefore, option (a) is wrong. And from expression (v), ${f}'\left( x \right)>{{e}^{2x}}$, which contradicts option (b). Thus, option (b) is also wrong.
Complete step-by-step answer:
We know, $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ and $f\left( 0 \right)=1$.
We also know that f(x) is an increasing function if $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$ when ${{x}_{1}}\le {{x}_{2}}$.
Let us recall a few differentiation formulas and concepts according to the question:
(i) \[\dfrac{d}{dx}\left[ {{e}^{mx}} \right]=m{{e}^{mx}}\]
(ii) \[\dfrac{d}{dx}\left[ uv \right]=u\dfrac{d}{dx}\left[ v \right]+v\dfrac{d}{dx}\left[ u \right]\] where u and v are functions of x.
(iii) if \[\dfrac{d}{dx}\left[ h\left( x \right) \right]>0\] where h(x) is a function of x, then h(x) is an increasing function.
Now, from the data given in question,
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right) \\
& \Rightarrow {f}'\left( x \right)-2f\left( x \right)>0 \\
\end{align}$
Multiplying this equation with ${{e}^{-2x}}$ , we get
\[\begin{align}
& {{e}^{-2x}}\left[ {f}'\left( x \right)-2f\left( x \right) \right]>{{e}^{-2x}}\left[ 0 \right] \\
& \Rightarrow {{e}^{-2x}}{f}'\left( x \right)-2{{e}^{-2x}}f\left( x \right)>0 \\
& \Rightarrow {{e}^{-2x}}\dfrac{d}{dx}\left[ f\left( x \right) \right]+\dfrac{d}{dx}\left[ {{e}^{-2x}} \right]f\left( x \right)>0\text{ from }\left( i \right) \\
& \Rightarrow \dfrac{d}{dx}\left[ {{e}^{-2x}}f\left( x \right) \right]>0\text{ from }\left( ii \right) \\
\end{align}\]
From (iii), \[{{e}^{-2x}}f\left( x \right)\] is an increasing function.
Let us assume \[g\left( x \right)={{e}^{-2x}}f\left( x \right)\]
Then for $x=0$ ,
\[\begin{align}
& g\left( 0 \right)={{e}^{-2\cdot 0}}f\left( 0 \right) \\
& ={{e}^{0}}\cdot 1 \\
& =1\text{ }\left( \because {{e}^{0}}=1 \right)
\end{align}\]
And for $x>0$
\[g\left( x \right)>g\left( 0 \right)\] since g(x) is an increasing function in $\left( 0,\infty \right)$
\[\begin{align}
& \Rightarrow {{e}^{-2x}}f\left( x \right)>1 \\
& \Rightarrow f\left( x \right)>\dfrac{1}{{{e}^{-2x}}} \\
& \Rightarrow f\left( x \right)>{{e}^{2x}}\text{ }\ldots \left( iv \right) \\
\end{align}\]
Thus, option (d) is correct.
We know from the question that
${f}'\left( x \right)>2f\left( x \right)$
Putting the value of equation (iv) in above expression, we get
${f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}\text{ }\ldots (v)$
We know that the exponential function ${{e}^{x}}$ is an increasing function in $\left( 0,\infty \right)$
Thus, above expression becomes
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}>0 \\
& \Rightarrow {f}'\left( x \right)>0 \\
\end{align}$
From (iii), $f\left( x \right)$ is an increasing function in $\left( 0,\infty \right)$
Thus, option (c) is also correct.
So, the correct answers are “Option C and D”.
Note: Since f(x) is an increasing function in $\left( 0,\infty \right)$, it can not be decreasing at the same time in $\left( 0,\infty \right)$. Therefore, option (a) is wrong. And from expression (v), ${f}'\left( x \right)>{{e}^{2x}}$, which contradicts option (b). Thus, option (b) is also wrong.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE

What is the chemical name and formula of sindoor class 11 chemistry CBSE
