
If $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ , and $f\left( 0 \right)=1$, then
(a) $f\left( x \right)$ is decreasing in $\left( 0,\infty \right)$
(b) ${f}'\left( x \right)<{{e}^{2x}}$ in $\left( 0,\infty \right)$
(c) $f\left( x \right)$ is increasing in $\left( 0,\infty \right)$
(d) $f\left( x \right)>{{e}^{2x}}$ in $\left( 0,\infty \right)$
This question can have multiple correct options.
Answer
590.4k+ views
Hint: First we will show that \[{{e}^{-2x}}f\left( x \right)\] is an increasing function from the data given in the question. Then we will try to see which relation among ${f}'\left( x \right)<{{e}^{2x}}$and $f\left( x \right)>{{e}^{2x}}$turns out to be true. Then we will try to find if f(x) is an increasing or decreasing function in $\left( 0,\infty \right)$.
Complete step-by-step answer:
We know, $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ and $f\left( 0 \right)=1$.
We also know that f(x) is an increasing function if $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$ when ${{x}_{1}}\le {{x}_{2}}$.
Let us recall a few differentiation formulas and concepts according to the question:
(i) \[\dfrac{d}{dx}\left[ {{e}^{mx}} \right]=m{{e}^{mx}}\]
(ii) \[\dfrac{d}{dx}\left[ uv \right]=u\dfrac{d}{dx}\left[ v \right]+v\dfrac{d}{dx}\left[ u \right]\] where u and v are functions of x.
(iii) if \[\dfrac{d}{dx}\left[ h\left( x \right) \right]>0\] where h(x) is a function of x, then h(x) is an increasing function.
Now, from the data given in question,
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right) \\
& \Rightarrow {f}'\left( x \right)-2f\left( x \right)>0 \\
\end{align}$
Multiplying this equation with ${{e}^{-2x}}$ , we get
\[\begin{align}
& {{e}^{-2x}}\left[ {f}'\left( x \right)-2f\left( x \right) \right]>{{e}^{-2x}}\left[ 0 \right] \\
& \Rightarrow {{e}^{-2x}}{f}'\left( x \right)-2{{e}^{-2x}}f\left( x \right)>0 \\
& \Rightarrow {{e}^{-2x}}\dfrac{d}{dx}\left[ f\left( x \right) \right]+\dfrac{d}{dx}\left[ {{e}^{-2x}} \right]f\left( x \right)>0\text{ from }\left( i \right) \\
& \Rightarrow \dfrac{d}{dx}\left[ {{e}^{-2x}}f\left( x \right) \right]>0\text{ from }\left( ii \right) \\
\end{align}\]
From (iii), \[{{e}^{-2x}}f\left( x \right)\] is an increasing function.
Let us assume \[g\left( x \right)={{e}^{-2x}}f\left( x \right)\]
Then for $x=0$ ,
\[\begin{align}
& g\left( 0 \right)={{e}^{-2\cdot 0}}f\left( 0 \right) \\
& ={{e}^{0}}\cdot 1 \\
& =1\text{ }\left( \because {{e}^{0}}=1 \right)
\end{align}\]
And for $x>0$
\[g\left( x \right)>g\left( 0 \right)\] since g(x) is an increasing function in $\left( 0,\infty \right)$
\[\begin{align}
& \Rightarrow {{e}^{-2x}}f\left( x \right)>1 \\
& \Rightarrow f\left( x \right)>\dfrac{1}{{{e}^{-2x}}} \\
& \Rightarrow f\left( x \right)>{{e}^{2x}}\text{ }\ldots \left( iv \right) \\
\end{align}\]
Thus, option (d) is correct.
We know from the question that
${f}'\left( x \right)>2f\left( x \right)$
Putting the value of equation (iv) in above expression, we get
${f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}\text{ }\ldots (v)$
We know that the exponential function ${{e}^{x}}$ is an increasing function in $\left( 0,\infty \right)$
Thus, above expression becomes
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}>0 \\
& \Rightarrow {f}'\left( x \right)>0 \\
\end{align}$
From (iii), $f\left( x \right)$ is an increasing function in $\left( 0,\infty \right)$
Thus, option (c) is also correct.
So, the correct answers are “Option C and D”.
Note: Since f(x) is an increasing function in $\left( 0,\infty \right)$, it can not be decreasing at the same time in $\left( 0,\infty \right)$. Therefore, option (a) is wrong. And from expression (v), ${f}'\left( x \right)>{{e}^{2x}}$, which contradicts option (b). Thus, option (b) is also wrong.
Complete step-by-step answer:
We know, $f:\mathbb{R}\to \mathbb{R}$ is a differentiable function such that ${f}'\left( x \right)>2f\left( x \right)$ for all $x\in \mathbb{R}$ and $f\left( 0 \right)=1$.
We also know that f(x) is an increasing function if $f\left( {{x}_{1}} \right)\le f\left( {{x}_{2}} \right)$ when ${{x}_{1}}\le {{x}_{2}}$.
Let us recall a few differentiation formulas and concepts according to the question:
(i) \[\dfrac{d}{dx}\left[ {{e}^{mx}} \right]=m{{e}^{mx}}\]
(ii) \[\dfrac{d}{dx}\left[ uv \right]=u\dfrac{d}{dx}\left[ v \right]+v\dfrac{d}{dx}\left[ u \right]\] where u and v are functions of x.
(iii) if \[\dfrac{d}{dx}\left[ h\left( x \right) \right]>0\] where h(x) is a function of x, then h(x) is an increasing function.
Now, from the data given in question,
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right) \\
& \Rightarrow {f}'\left( x \right)-2f\left( x \right)>0 \\
\end{align}$
Multiplying this equation with ${{e}^{-2x}}$ , we get
\[\begin{align}
& {{e}^{-2x}}\left[ {f}'\left( x \right)-2f\left( x \right) \right]>{{e}^{-2x}}\left[ 0 \right] \\
& \Rightarrow {{e}^{-2x}}{f}'\left( x \right)-2{{e}^{-2x}}f\left( x \right)>0 \\
& \Rightarrow {{e}^{-2x}}\dfrac{d}{dx}\left[ f\left( x \right) \right]+\dfrac{d}{dx}\left[ {{e}^{-2x}} \right]f\left( x \right)>0\text{ from }\left( i \right) \\
& \Rightarrow \dfrac{d}{dx}\left[ {{e}^{-2x}}f\left( x \right) \right]>0\text{ from }\left( ii \right) \\
\end{align}\]
From (iii), \[{{e}^{-2x}}f\left( x \right)\] is an increasing function.
Let us assume \[g\left( x \right)={{e}^{-2x}}f\left( x \right)\]
Then for $x=0$ ,
\[\begin{align}
& g\left( 0 \right)={{e}^{-2\cdot 0}}f\left( 0 \right) \\
& ={{e}^{0}}\cdot 1 \\
& =1\text{ }\left( \because {{e}^{0}}=1 \right)
\end{align}\]
And for $x>0$
\[g\left( x \right)>g\left( 0 \right)\] since g(x) is an increasing function in $\left( 0,\infty \right)$
\[\begin{align}
& \Rightarrow {{e}^{-2x}}f\left( x \right)>1 \\
& \Rightarrow f\left( x \right)>\dfrac{1}{{{e}^{-2x}}} \\
& \Rightarrow f\left( x \right)>{{e}^{2x}}\text{ }\ldots \left( iv \right) \\
\end{align}\]
Thus, option (d) is correct.
We know from the question that
${f}'\left( x \right)>2f\left( x \right)$
Putting the value of equation (iv) in above expression, we get
${f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}\text{ }\ldots (v)$
We know that the exponential function ${{e}^{x}}$ is an increasing function in $\left( 0,\infty \right)$
Thus, above expression becomes
$\begin{align}
& {f}'\left( x \right)>2f\left( x \right)>2{{e}^{2x}}>0 \\
& \Rightarrow {f}'\left( x \right)>0 \\
\end{align}$
From (iii), $f\left( x \right)$ is an increasing function in $\left( 0,\infty \right)$
Thus, option (c) is also correct.
So, the correct answers are “Option C and D”.
Note: Since f(x) is an increasing function in $\left( 0,\infty \right)$, it can not be decreasing at the same time in $\left( 0,\infty \right)$. Therefore, option (a) is wrong. And from expression (v), ${f}'\left( x \right)>{{e}^{2x}}$, which contradicts option (b). Thus, option (b) is also wrong.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

