
If \[f\left( x \right)=\dfrac{x\left( x+1 \right)}{2}\] is given, then determine the expression for the value of \[f\left( x+2 \right)\].
(a) \[f\left( x \right)+f\left( 2 \right)\]
(b) \[\left( x+2 \right)f\left( x \right)\]
(c) \[x\left( x+2 \right)f\left( x \right)\]
(d) \[\dfrac{xf\left( x \right)}{x+2}\]
(e) \[\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}\]
Answer
591.9k+ views
Hint: In this question, We are given with the function \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\]. We will then evaluate the expression of \[f\left( x+2 \right)\] by \[x\] by \[x+2\] in \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\]. And then we will check which of the given options satisfy the obtained expression of \[f\left( x+2 \right)\].
Complete step-by-step answer:
The function \[f\left( x \right)\] is given by \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\].
In order to find the expression of \[f\left( x+2 \right)\] in terms of some value of the function \[f\left( x \right)\], we will first evaluate the value of \[f\left( x+2 \right)\].
Now replacing \[x\] by \[x+2\] in the expression \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( \left( x+2 \right)-1 \right)}{2}\]
On simplifying the above expression for \[f\left( x+2 \right)\], we get
\[\begin{align}
& f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+2-1 \right)}{2} \\
& =\dfrac{\left( x+2 \right)\left( x+1 \right)}{2}
\end{align}\]
Thus we have
\[f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+1 \right)}{2}\]
Now if we multiply and divide the left hand side of the above equation with \[x\], then we will get
\[f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+1 \right)\left( x \right)}{2x}...........(1)\]
Now we can check which of the following options will satisfy equation (1)
Let if possible \[f\left( x+2 \right)=f\left( x \right)+f\left( 2 \right)\].
Now the function \[f(x)\] is given by \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\]. Using this in the above expression for \[f\left( x+2 \right)\], we get
\[\begin{align}
& f\left( x+2 \right)=f\left( x \right)+f\left( 2 \right) \\
& =\dfrac{x\left( x-1 \right)}{2}+\dfrac{2\left( 2-1 \right)}{2} \\
& =\dfrac{x\left( x-1 \right)}{2}+1 \\
& =\dfrac{x\left( x-1 \right)+2}{2}
\end{align}\]
Since in this case the value of \[f\left( x+2 \right)\] cannot be expressed as the value obtained in the equation (1), hence option (a) is wrong.
Now let if possible \[f\left( x+2 \right)=\left( x+2 \right)f\left( x \right)\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=\left( x+2 \right)f\left( x \right) \\
& =\left( x+2 \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\
& =\dfrac{x\left( x-1 \right)\left( x+2 \right)}{2}
\end{align}\]
which is again not equal to the value obtained in the equation (1), hence option (b) is wrong.
Now let if possible \[f\left( x+2 \right)=x\left( x+2 \right)f\left( x \right)\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=x\left( x+2 \right)f\left( x \right) \\
& =x\left( x+2 \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\
& =\dfrac{{{x}^{2}}\left( x-1 \right)\left( x+2 \right)}{2}
\end{align}\]
which is again cannot be expressed as the value obtained in the equation (1), hence option (c) is wrong.
Now let if possible \[f\left( x+2 \right)=\dfrac{xf\left( x \right)}{\left( x+2 \right)}\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=\dfrac{xf\left( x \right)}{\left( x+2 \right)} \\
& =\left( \dfrac{\left( x \right)}{x+2} \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\
& =\dfrac{{{x}^{2}}\left( x-1 \right)}{2\left( x+2 \right)}
\end{align}\]
which is again not equal to the value obtained in the equation (1), hence option (d) is wrong.
Now let if possible \[f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x} \\
& =\left( \dfrac{x+2}{x} \right)\left( \dfrac{\left( x+1 \right)\left( \left( x+1 \right)-1 \right)}{2} \right) \\
& =\dfrac{\left( x+2 \right)\left( x+1 \right)x}{2x}
\end{align}\]
which is equal to the value obtained in the equation (1).
Hence we have that \[f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}\].
So, the correct answer is “Option (e)”.
Note: In this problem, we can also evaluate the expression for \[f\left( x+2 \right)\] obtained in equation (1) and simplify it and express it in terms of some value of the function \[f(x)\].
Complete step-by-step answer:
The function \[f\left( x \right)\] is given by \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\].
In order to find the expression of \[f\left( x+2 \right)\] in terms of some value of the function \[f\left( x \right)\], we will first evaluate the value of \[f\left( x+2 \right)\].
Now replacing \[x\] by \[x+2\] in the expression \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( \left( x+2 \right)-1 \right)}{2}\]
On simplifying the above expression for \[f\left( x+2 \right)\], we get
\[\begin{align}
& f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+2-1 \right)}{2} \\
& =\dfrac{\left( x+2 \right)\left( x+1 \right)}{2}
\end{align}\]
Thus we have
\[f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+1 \right)}{2}\]
Now if we multiply and divide the left hand side of the above equation with \[x\], then we will get
\[f\left( x+2 \right)=\dfrac{\left( x+2 \right)\left( x+1 \right)\left( x \right)}{2x}...........(1)\]
Now we can check which of the following options will satisfy equation (1)
Let if possible \[f\left( x+2 \right)=f\left( x \right)+f\left( 2 \right)\].
Now the function \[f(x)\] is given by \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\]. Using this in the above expression for \[f\left( x+2 \right)\], we get
\[\begin{align}
& f\left( x+2 \right)=f\left( x \right)+f\left( 2 \right) \\
& =\dfrac{x\left( x-1 \right)}{2}+\dfrac{2\left( 2-1 \right)}{2} \\
& =\dfrac{x\left( x-1 \right)}{2}+1 \\
& =\dfrac{x\left( x-1 \right)+2}{2}
\end{align}\]
Since in this case the value of \[f\left( x+2 \right)\] cannot be expressed as the value obtained in the equation (1), hence option (a) is wrong.
Now let if possible \[f\left( x+2 \right)=\left( x+2 \right)f\left( x \right)\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=\left( x+2 \right)f\left( x \right) \\
& =\left( x+2 \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\
& =\dfrac{x\left( x-1 \right)\left( x+2 \right)}{2}
\end{align}\]
which is again not equal to the value obtained in the equation (1), hence option (b) is wrong.
Now let if possible \[f\left( x+2 \right)=x\left( x+2 \right)f\left( x \right)\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=x\left( x+2 \right)f\left( x \right) \\
& =x\left( x+2 \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\
& =\dfrac{{{x}^{2}}\left( x-1 \right)\left( x+2 \right)}{2}
\end{align}\]
which is again cannot be expressed as the value obtained in the equation (1), hence option (c) is wrong.
Now let if possible \[f\left( x+2 \right)=\dfrac{xf\left( x \right)}{\left( x+2 \right)}\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=\dfrac{xf\left( x \right)}{\left( x+2 \right)} \\
& =\left( \dfrac{\left( x \right)}{x+2} \right)\left( \dfrac{x\left( x-1 \right)}{2} \right) \\
& =\dfrac{{{x}^{2}}\left( x-1 \right)}{2\left( x+2 \right)}
\end{align}\]
which is again not equal to the value obtained in the equation (1), hence option (d) is wrong.
Now let if possible \[f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}\]. Then again using \[f\left( x \right)=\dfrac{x\left( x-1 \right)}{2}\], we get
\[\begin{align}
& f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x} \\
& =\left( \dfrac{x+2}{x} \right)\left( \dfrac{\left( x+1 \right)\left( \left( x+1 \right)-1 \right)}{2} \right) \\
& =\dfrac{\left( x+2 \right)\left( x+1 \right)x}{2x}
\end{align}\]
which is equal to the value obtained in the equation (1).
Hence we have that \[f\left( x+2 \right)=\dfrac{\left( x+2 \right)f\left( x+1 \right)}{x}\].
So, the correct answer is “Option (e)”.
Note: In this problem, we can also evaluate the expression for \[f\left( x+2 \right)\] obtained in equation (1) and simplify it and express it in terms of some value of the function \[f(x)\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

