
If \[f\left( x \right)=\dfrac{{{x}^{2}}-9}{{{x}^{2}}-2x-3},x\ne 3\] is continuous at x=3, then which one of the following is correct?
a) f(3)=0
b) f(3)=1.5
c) f(3)=3
d) f(3)=-1.5
Answer
613.8k+ views
Hint:Simplify the numerator and denominator of $f(x)$ and cancel out the like terms. By using limits and derivatives, apply the limit $x\rightarrow3$ and find the value of $f(3)$.
Complete step-by-step answer:
Given, \[f\left( x \right)=\dfrac{{{x}^{2}}-9}{{{x}^{2}}-2x-3}\]
From the question it’s told that function is continuous at x=3 i.e. there will be no breakage of graph.
\[\begin{align}
& \therefore \underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=f\left( 3 \right) \\
& \Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\dfrac{{{x}^{2}}-9}{{{x}^{2}}-2x-3}......\left( 1 \right) \\
\end{align}\]
We know \[\left( {{x}^{2}}-9 \right)\], can be written as \[\left( {{x}^{2}}-{{3}^{2}} \right)\]
where, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\therefore {{x}^{2}}-{{3}^{2}}=\left( x-3 \right)\left( x+3 \right)......\left( 2 \right)\]
Similarly, \[{{x}^{2}}+2x-3\] can be simplified by finding the roots we can find the roots by using the quadratic equation, which is of the form \[a{{x}^{2}}+bx+c=0\].
\[\therefore \]Comparing \[\left( a{{x}^{2}}+bx+c \right)\]and \[\left( {{x}^{2}}+2x-3 \right)\]we can find that a=1, b=2 and c=-3.
Substituting the values in the quadratic equation,
\[\begin{align}
& \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\Rightarrow \dfrac{-2\pm \sqrt{{{2}^{2}}-4\times 1\times \left( -3 \right)}}{2\times 1} \\
& =\dfrac{-2\pm \sqrt{4+12}}{2}=\dfrac{-2\pm \sqrt{16}}{2}=\dfrac{-2\pm 4}{2} \\
\end{align}\]
\[\therefore \]We get two roots as \[\left( \dfrac{-2+4}{2} \right)\]and \[\left( \dfrac{-2-4}{2} \right)\]
\[\therefore \]Roots are (1, -3).
\[\therefore \]\[\left( {{x}^{2}}+2x-3 \right)\]becomes \[\left( x-1 \right)\left( x+3 \right).......(3)\]
Substitute (2) and (3) in equation (1)
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\dfrac{{{x}^{2}}-9}{{{x}^{2}}+2x-3}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left( x+3 \right)\left( x-3 \right)}{\left( x-1 \right)\left( x+3 \right)}\]
Cancel out $(x+3)$ in the numerator and denominator
= \[\underset{x\to 3}{\mathop{\lim }}\,\dfrac{x-3}{x-1}\]
Put x=3
\[=\dfrac{3-3}{3-1}=\dfrac{0}{2}=0\]
Any fraction with zero as numerator and any number as denominator is always equal to zero.
\[\therefore f\left( 3 \right)=0\]
Hence, the correct option is (a) \[f\left( 3 \right)=0\]
Note: Find the roots of both numerator and denominator and then apply f(3) where x=3, to get the desired output.For these types of problems always try to factorize the given equation and simplify to cancel any common terms of both in numerator and denominator
Complete step-by-step answer:
Given, \[f\left( x \right)=\dfrac{{{x}^{2}}-9}{{{x}^{2}}-2x-3}\]
From the question it’s told that function is continuous at x=3 i.e. there will be no breakage of graph.
\[\begin{align}
& \therefore \underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=f\left( 3 \right) \\
& \Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\dfrac{{{x}^{2}}-9}{{{x}^{2}}-2x-3}......\left( 1 \right) \\
\end{align}\]
We know \[\left( {{x}^{2}}-9 \right)\], can be written as \[\left( {{x}^{2}}-{{3}^{2}} \right)\]
where, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\therefore {{x}^{2}}-{{3}^{2}}=\left( x-3 \right)\left( x+3 \right)......\left( 2 \right)\]
Similarly, \[{{x}^{2}}+2x-3\] can be simplified by finding the roots we can find the roots by using the quadratic equation, which is of the form \[a{{x}^{2}}+bx+c=0\].
\[\therefore \]Comparing \[\left( a{{x}^{2}}+bx+c \right)\]and \[\left( {{x}^{2}}+2x-3 \right)\]we can find that a=1, b=2 and c=-3.
Substituting the values in the quadratic equation,
\[\begin{align}
& \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\Rightarrow \dfrac{-2\pm \sqrt{{{2}^{2}}-4\times 1\times \left( -3 \right)}}{2\times 1} \\
& =\dfrac{-2\pm \sqrt{4+12}}{2}=\dfrac{-2\pm \sqrt{16}}{2}=\dfrac{-2\pm 4}{2} \\
\end{align}\]
\[\therefore \]We get two roots as \[\left( \dfrac{-2+4}{2} \right)\]and \[\left( \dfrac{-2-4}{2} \right)\]
\[\therefore \]Roots are (1, -3).
\[\therefore \]\[\left( {{x}^{2}}+2x-3 \right)\]becomes \[\left( x-1 \right)\left( x+3 \right).......(3)\]
Substitute (2) and (3) in equation (1)
\[\Rightarrow \underset{x\to 3}{\mathop{\lim }}\,\dfrac{{{x}^{2}}-9}{{{x}^{2}}+2x-3}=\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\left( x+3 \right)\left( x-3 \right)}{\left( x-1 \right)\left( x+3 \right)}\]
Cancel out $(x+3)$ in the numerator and denominator
= \[\underset{x\to 3}{\mathop{\lim }}\,\dfrac{x-3}{x-1}\]
Put x=3
\[=\dfrac{3-3}{3-1}=\dfrac{0}{2}=0\]
Any fraction with zero as numerator and any number as denominator is always equal to zero.
\[\therefore f\left( 3 \right)=0\]
Hence, the correct option is (a) \[f\left( 3 \right)=0\]
Note: Find the roots of both numerator and denominator and then apply f(3) where x=3, to get the desired output.For these types of problems always try to factorize the given equation and simplify to cancel any common terms of both in numerator and denominator
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

