
If $ f\left( x \right) $ satisfies $ x + \left| {f\left( x \right)} \right| = 2f\left( x \right) $ then $ {f^{ - 1}}\left( x \right) $ satisfies
A. $ 3x + \left| {{f^{ - 1}}\left( x \right)} \right| = 2{f^{ - 1}}\left( x \right) $
B. $ x + \left| {{f^{ - 1}}\left( x \right)} \right| = 2{f^{ - 1}}\left( x \right) $
C. $ {f^{ - 1}}\left( x \right) - \left| x \right| = 2x $
D. $ 3x - \left| {{f^{ - 1}}\left( x \right)} \right| = 2{f^{ - 1}}\left( x \right) $
Answer
589.5k+ views
Hint: In this problem, first we will consider $ f\left( x \right) = y $ . Then, we will use the definition of the modulus function. Modulus function is given by $ \left| x \right| = \left\{
x,\quad x \geqslant 0 \\
- x,\quad x < 0 \\
\right. $ . Then, we will find an inverse function of $ f\left( x \right) $ . Then, we will check that out of four options, which option is correct.
Complete step-by-step answer:
In this problem, it is given that the function $ f\left( x \right) $ satisfies $ x + \left| {f\left( x \right)} \right| = 2f\left( x \right) \cdots \cdots \left( 1 \right) $ . Let us consider $ f\left( x \right) = y $ . Therefore, from $ \left( 1 \right) $ we can write $ x + \left| y \right| = 2y \cdots \cdots \left( 2 \right) $ . We know that $ \left| x \right| = x $ for $ x \geqslant 0 $ and $ \left| x \right| = - x $ for $ x < 0 $ . We will use this information in equation $ \left( 2 \right) $ .
Case I: Consider $ y \geqslant 0 $
If $ y \geqslant 0 $ then $ \left| y \right| = y $ . Therefore, from equation $ \left( 2 \right) $ we get
$
x + y = 2y \\
\Rightarrow x = 2y - y \\
\Rightarrow x = y \\
\Rightarrow {f^{ - 1}}\left( y \right) = y\quad \left[ {\because f\left( x \right) = y \Rightarrow x = {f^{ - 1}}\left( y \right)} \right] \\
$
Replace $ y $ by $ x $ , we get $ {f^{ - 1}}\left( x \right) = x $ for $ x \geqslant 0 $ .
Case II: Consider $ y < 0 $
If $ y < 0 $ then $ \left| y \right| = - y $ . Therefore, from equation $ \left( 2 \right) $ we get
$
x + \left( { - y} \right) = 2y \\
\Rightarrow x = 2y + y \\
\Rightarrow x = 3y \\
\Rightarrow {f^{ - 1}}\left( y \right) = 3y\quad \left[ {\because f\left( x \right) = y \Rightarrow x = {f^{ - 1}}\left( y \right)} \right] \\
$
Replace $ y $ by $ x $ , we get $ {f^{ - 1}}\left( x \right) = 3x $ for $ x < 0 $ . Therefore, from case I and II, we have $ {f^{ - 1}}\left( x \right) = \left\{
x,\quad x \geqslant 0 \\
3x,\quad x < 0 \\
\right. $ .
Now we will check that out of four options which option is correct.
Let us take $ {f^{ - 1}}\left( x \right) = x $ for $ x \geqslant 0 $ . Note that here $ \left| {{f^{ - 1}}\left( x \right)} \right| = {f^{ - 1}}\left( x \right) $ .
In option A, LHS $ = 3x + \left| {{f^{ - 1}}\left( x \right)} \right| = 3x + {f^{ - 1}}\left( x \right) = 3x + x = 4x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2x $ .
Here LHS $ \ne $ RHS. Therefore, option A is wrong.
In option C, LHS $ = {f^{ - 1}}\left( x \right) - \left| x \right| = x - \left| x \right| = x - x = 0 $ and RHS $ = 2x $ .
Here LHS $ \ne $ RHS. Therefore, option C is wrong.
Let us take $ {f^{ - 1}}\left( x \right) = 3x $ for $ x < 0 $ . Note that here $ \left| {{f^{ - 1}}\left( x \right)} \right| = - {f^{ - 1}}\left( x \right) $ .
In option B, LHS $ = x + \left| {{f^{ - 1}}\left( x \right)} \right| = x - {f^{ - 1}}\left( x \right) = x - 3x = - 2x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2\left( {3x} \right) = 6x $ .
Here LHS $ \ne $ RHS. Therefore, option B is wrong.
Let us take $ {f^{ - 1}}\left( x \right) = \left\{
x,\quad x \geqslant 0 \\
3x,\quad x < 0 \\
\right. $ . Note that here $ \left| {{f^{ - 1}}\left( x \right)} \right| = {f^{ - 1}}\left( x \right) $ for $ x \geqslant 0 $ and $ \left| {{f^{ - 1}}\left( x \right)} \right| = - {f^{ - 1}}\left( x \right) $ for $ x < 0 $ .
In option D, LHS $ = 3x - \left| {{f^{ - 1}}\left( x \right)} \right| = 3x - {f^{ - 1}}\left( x \right) = 3x - x = 2x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2x $ .
Also in option D, LHS $ = 3x - \left| {{f^{ - 1}}\left( x \right)} \right| = 3x - \left( { - {f^{ - 1}}\left( x \right)} \right) = 3x - \left( { - 3x} \right) = 6x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2\left( {3x} \right) = 6x $ . Here LHS $ = $ RHS. Therefore, we can say that option D is correct.
So, the correct answer is “Option D”.
Note: A function $ f:A \to B $ is said to be one-one function if for every $ x,y \in A $ , $ x \ne y \Rightarrow f\left( x \right) \ne f\left( y \right) $ or $ f\left( x \right) = f\left( y \right) \Rightarrow x = y $ . A function $ f\left( x \right) $ is one-one if and only if $ {f^{ - 1}}\left( x \right) $ exists.
x,\quad x \geqslant 0 \\
- x,\quad x < 0 \\
\right. $ . Then, we will find an inverse function of $ f\left( x \right) $ . Then, we will check that out of four options, which option is correct.
Complete step-by-step answer:
In this problem, it is given that the function $ f\left( x \right) $ satisfies $ x + \left| {f\left( x \right)} \right| = 2f\left( x \right) \cdots \cdots \left( 1 \right) $ . Let us consider $ f\left( x \right) = y $ . Therefore, from $ \left( 1 \right) $ we can write $ x + \left| y \right| = 2y \cdots \cdots \left( 2 \right) $ . We know that $ \left| x \right| = x $ for $ x \geqslant 0 $ and $ \left| x \right| = - x $ for $ x < 0 $ . We will use this information in equation $ \left( 2 \right) $ .
Case I: Consider $ y \geqslant 0 $
If $ y \geqslant 0 $ then $ \left| y \right| = y $ . Therefore, from equation $ \left( 2 \right) $ we get
$
x + y = 2y \\
\Rightarrow x = 2y - y \\
\Rightarrow x = y \\
\Rightarrow {f^{ - 1}}\left( y \right) = y\quad \left[ {\because f\left( x \right) = y \Rightarrow x = {f^{ - 1}}\left( y \right)} \right] \\
$
Replace $ y $ by $ x $ , we get $ {f^{ - 1}}\left( x \right) = x $ for $ x \geqslant 0 $ .
Case II: Consider $ y < 0 $
If $ y < 0 $ then $ \left| y \right| = - y $ . Therefore, from equation $ \left( 2 \right) $ we get
$
x + \left( { - y} \right) = 2y \\
\Rightarrow x = 2y + y \\
\Rightarrow x = 3y \\
\Rightarrow {f^{ - 1}}\left( y \right) = 3y\quad \left[ {\because f\left( x \right) = y \Rightarrow x = {f^{ - 1}}\left( y \right)} \right] \\
$
Replace $ y $ by $ x $ , we get $ {f^{ - 1}}\left( x \right) = 3x $ for $ x < 0 $ . Therefore, from case I and II, we have $ {f^{ - 1}}\left( x \right) = \left\{
x,\quad x \geqslant 0 \\
3x,\quad x < 0 \\
\right. $ .
Now we will check that out of four options which option is correct.
Let us take $ {f^{ - 1}}\left( x \right) = x $ for $ x \geqslant 0 $ . Note that here $ \left| {{f^{ - 1}}\left( x \right)} \right| = {f^{ - 1}}\left( x \right) $ .
In option A, LHS $ = 3x + \left| {{f^{ - 1}}\left( x \right)} \right| = 3x + {f^{ - 1}}\left( x \right) = 3x + x = 4x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2x $ .
Here LHS $ \ne $ RHS. Therefore, option A is wrong.
In option C, LHS $ = {f^{ - 1}}\left( x \right) - \left| x \right| = x - \left| x \right| = x - x = 0 $ and RHS $ = 2x $ .
Here LHS $ \ne $ RHS. Therefore, option C is wrong.
Let us take $ {f^{ - 1}}\left( x \right) = 3x $ for $ x < 0 $ . Note that here $ \left| {{f^{ - 1}}\left( x \right)} \right| = - {f^{ - 1}}\left( x \right) $ .
In option B, LHS $ = x + \left| {{f^{ - 1}}\left( x \right)} \right| = x - {f^{ - 1}}\left( x \right) = x - 3x = - 2x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2\left( {3x} \right) = 6x $ .
Here LHS $ \ne $ RHS. Therefore, option B is wrong.
Let us take $ {f^{ - 1}}\left( x \right) = \left\{
x,\quad x \geqslant 0 \\
3x,\quad x < 0 \\
\right. $ . Note that here $ \left| {{f^{ - 1}}\left( x \right)} \right| = {f^{ - 1}}\left( x \right) $ for $ x \geqslant 0 $ and $ \left| {{f^{ - 1}}\left( x \right)} \right| = - {f^{ - 1}}\left( x \right) $ for $ x < 0 $ .
In option D, LHS $ = 3x - \left| {{f^{ - 1}}\left( x \right)} \right| = 3x - {f^{ - 1}}\left( x \right) = 3x - x = 2x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2x $ .
Also in option D, LHS $ = 3x - \left| {{f^{ - 1}}\left( x \right)} \right| = 3x - \left( { - {f^{ - 1}}\left( x \right)} \right) = 3x - \left( { - 3x} \right) = 6x $ and RHS $ = 2{f^{ - 1}}\left( x \right) = 2\left( {3x} \right) = 6x $ . Here LHS $ = $ RHS. Therefore, we can say that option D is correct.
So, the correct answer is “Option D”.
Note: A function $ f:A \to B $ is said to be one-one function if for every $ x,y \in A $ , $ x \ne y \Rightarrow f\left( x \right) \ne f\left( y \right) $ or $ f\left( x \right) = f\left( y \right) \Rightarrow x = y $ . A function $ f\left( x \right) $ is one-one if and only if $ {f^{ - 1}}\left( x \right) $ exists.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

