Answer
Verified
441k+ views
Hint: First find the derivative of the function ${{\text{f}}^{'}}\left( {\text{x}} \right)$ and equate it to zero to find values of x. Then put these values in the second derivative ${{\text{f}}^{''}}\left( {\text{x}} \right)$ of the function. If ${{\text{f}}^{''}}\left( {\text{x}} \right)$$ > 0$ then f(x) has minima at x, If ${{\text{f}}^{''}}\left( {\text{x}} \right)$$ < 0$ then f(x) has maxima at x.The maximum value value can be find by putting the value of maxima in f(x).
Complete step-by-step answer:
Given function, \[{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15\]-- (i)
On differentiating the given function w.r.t. x we get,
$ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {3{x^3} - 9{x^2} - 27x + 15} \right)$
We know that $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$ and $\dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0$
On applying this we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 3 \times 3{x^{3 - 1}} - 9 \times 2{x^{2 - 1}} - 27{x^{1 - 1}} + 0\]
On solving further we get,\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9{x^2} - 18x - 27\]
On putting ${{\text{f}}^{'}}\left( {\text{x}} \right) = 0$ , we get-
$ \Rightarrow 9{x^2} - 18x - 27 = 0$
On taking $9$ common and transferring on the right side we get-
$ \Rightarrow {x^2} - 2x - 3 = 0$
On factoring we get,
$ \Rightarrow {x^2} - 3x + x - 3 = 0$
$ \Rightarrow \left( {{x^2} - 3x} \right) + \left( {x - 3} \right) = 0$
On taking x and 1 common we get,
$ \Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0$
On taking $\left( {x - 3} \right)$ common we get,
$ \Rightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0$
On putting both factors equal to zero we get,
$ \Rightarrow x - 3 = 0 \Rightarrow x = 3$
or
$ \Rightarrow x + 1 = 0 \Rightarrow x = - 1$
Now again differentiate the first derivative w.r.t. x-
\[ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {9{x^2} - 18x - 27} \right)\]
On differentiating we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9 \times 2{x^{2 - 1}} - 18{x^{1 - 1}}\]
On further solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = 18x - 18$ -- (ii)
Now put x=$3$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 18 \times 3 - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 54 - 18 = 36$
Now here$ \Rightarrow {{\text{f}}^{''}}\left( {\text{3}} \right) = 36 > 0$
So f(x) has minima at x= $3$
Now put x=$ - 1$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = 18\left( { - 1} \right) - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 18 - 18 = - 36$
Here,$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 36 < 0$
So f(x) has maxima at x=$ - 1$
The maximum value of the function f(x) will be at x=$ - 1$
So on putting x=$3$ in eq. (i) we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 3{\left( { - 1} \right)^3} - 9{\left( { - 1} \right)^2} - 27\left( { - 1} \right) + 15\]
On simplifying we get,
\[
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 3 - 9 + 27 + 15 \\
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 12 + 42 = 30 \\
\]
∴The function has maximum value $30$
Hence option B is the correct answer.
Note: Since f(x) has minima at x= $3$ so function also has minimum value. To find the minimum value put the value of x=$3$ in eq. (i)
\[
\Rightarrow {\text{f}}\left( x \right) = 3{\left( 3 \right)^3} - 9{\left( 3 \right)^2} - 27\left( 3 \right) + 15 \\
\Rightarrow {\text{f}}\left( x \right) = 3 \times 27 - 9 \times 9 - 27 \times 3 + 15 \\
\\
\]
On simplifying we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 81 - 81 - 81 + 15 = - 81 + 15 = - 66\]
So the minimum value of given function is $ - 66$
Complete step-by-step answer:
Given function, \[{\text{f}}\left( {\text{x}} \right) = 3{x^3} - 9{x^2} - 27x + 15\]-- (i)
On differentiating the given function w.r.t. x we get,
$ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {3{x^3} - 9{x^2} - 27x + 15} \right)$
We know that $\dfrac{{d\left( {{x^n}} \right)}}{{dx}} = n{x^{n - 1}}$ and $\dfrac{{d\left( {{\text{constant}}} \right)}}{{dx}} = 0$
On applying this we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 3 \times 3{x^{3 - 1}} - 9 \times 2{x^{2 - 1}} - 27{x^{1 - 1}} + 0\]
On solving further we get,\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9{x^2} - 18x - 27\]
On putting ${{\text{f}}^{'}}\left( {\text{x}} \right) = 0$ , we get-
$ \Rightarrow 9{x^2} - 18x - 27 = 0$
On taking $9$ common and transferring on the right side we get-
$ \Rightarrow {x^2} - 2x - 3 = 0$
On factoring we get,
$ \Rightarrow {x^2} - 3x + x - 3 = 0$
$ \Rightarrow \left( {{x^2} - 3x} \right) + \left( {x - 3} \right) = 0$
On taking x and 1 common we get,
$ \Rightarrow x\left( {x - 3} \right) + 1\left( {x - 3} \right) = 0$
On taking $\left( {x - 3} \right)$ common we get,
$ \Rightarrow \left( {x - 3} \right)\left( {x + 1} \right) = 0$
On putting both factors equal to zero we get,
$ \Rightarrow x - 3 = 0 \Rightarrow x = 3$
or
$ \Rightarrow x + 1 = 0 \Rightarrow x = - 1$
Now again differentiate the first derivative w.r.t. x-
\[ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = \dfrac{d}{{dx}}\left( {9{x^2} - 18x - 27} \right)\]
On differentiating we get,
\[ \Rightarrow {{\text{f}}^{'}}\left( {\text{x}} \right) = 9 \times 2{x^{2 - 1}} - 18{x^{1 - 1}}\]
On further solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( {\text{x}} \right) = 18x - 18$ -- (ii)
Now put x=$3$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 18 \times 3 - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( 3 \right) = 54 - 18 = 36$
Now here$ \Rightarrow {{\text{f}}^{''}}\left( {\text{3}} \right) = 36 > 0$
So f(x) has minima at x= $3$
Now put x=$ - 1$ in eq. (ii)
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = 18\left( { - 1} \right) - 18$
On solving we get,
$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 18 - 18 = - 36$
Here,$ \Rightarrow {{\text{f}}^{''}}\left( { - 1} \right) = - 36 < 0$
So f(x) has maxima at x=$ - 1$
The maximum value of the function f(x) will be at x=$ - 1$
So on putting x=$3$ in eq. (i) we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 3{\left( { - 1} \right)^3} - 9{\left( { - 1} \right)^2} - 27\left( { - 1} \right) + 15\]
On simplifying we get,
\[
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 3 - 9 + 27 + 15 \\
\Rightarrow {\text{f}}\left( {\text{x}} \right) = - 12 + 42 = 30 \\
\]
∴The function has maximum value $30$
Hence option B is the correct answer.
Note: Since f(x) has minima at x= $3$ so function also has minimum value. To find the minimum value put the value of x=$3$ in eq. (i)
\[
\Rightarrow {\text{f}}\left( x \right) = 3{\left( 3 \right)^3} - 9{\left( 3 \right)^2} - 27\left( 3 \right) + 15 \\
\Rightarrow {\text{f}}\left( x \right) = 3 \times 27 - 9 \times 9 - 27 \times 3 + 15 \\
\\
\]
On simplifying we get,
\[ \Rightarrow {\text{f}}\left( {\text{x}} \right) = 81 - 81 - 81 + 15 = - 81 + 15 = - 66\]
So the minimum value of given function is $ - 66$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE