
If $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$ then n satisfies the equation
A.${n^2} + n - 110 = 0$
B.${n^2} + 2n - 80 = 0$
C.${n^2} + 3n - 108 = 0$
D.${n^2} + 5n - 84 = 0$
Answer
509.4k+ views
Hint: By using the formula of permutation ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$and combination ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$in the given expression we can find the value of n. By substituting that value in the given options we can find the equation satisfied by that value.
Complete step-by-step answer:
We are given that $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
We know the formula of ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Here n = n+2 and r = 6
We get ,
$
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)!}}{{6!(n + 2 - 6)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)(n - 4)!}}{{6*5*4*3*2*1*(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}} \\
$
We know the formula of ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Here n = n – 2 and r = 2
$
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)!}}{{(n - 2 - 2)!}} \\
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)(n - 3)(n - 4)!}}{{(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = (n - 2)(n - 3) \\
$
Substituting the values in $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
$
\Rightarrow \dfrac{{\dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}}}}{{(n - 2)(n - 3)}} = 11 \\
\Rightarrow \dfrac{{(n + 2)(n + 1)n(n - 1)}}{{6*5*4*3*2*1}} = 11 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*2*3*5*4*3*2 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*10*9*8 \\
$
From this we get that n = 9
Now lets substitute this value of n in the options given
${n^2} + n - 110 = 0$
$ \Rightarrow {9^2} + 9 - 110 = 81 + 9 - 110 = 90 - 110 = - 20$
Therefore the value of n does not satisfy this equation
${n^2} + 2n - 80 = 0$
$ \Rightarrow {9^2} + 2(9) - 80 = 81 + 18 - 80 = 99 - 80 = 19$
Therefore the value of n does not satisfy this equation
${n^2} + 3n - 108 = 0$
$ \Rightarrow {9^2} + 3(9) - 108 = 81 + 27 - 108 = 108 - 108 = 0$
From this we get that the value of n satisfies this equation
Therefore the correct option is C
Note: Permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Complete step-by-step answer:
We are given that $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
We know the formula of ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Here n = n+2 and r = 6
We get ,
$
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)!}}{{6!(n + 2 - 6)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)(n - 4)!}}{{6*5*4*3*2*1*(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}} \\
$
We know the formula of ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Here n = n – 2 and r = 2
$
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)!}}{{(n - 2 - 2)!}} \\
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)(n - 3)(n - 4)!}}{{(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = (n - 2)(n - 3) \\
$
Substituting the values in $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
$
\Rightarrow \dfrac{{\dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}}}}{{(n - 2)(n - 3)}} = 11 \\
\Rightarrow \dfrac{{(n + 2)(n + 1)n(n - 1)}}{{6*5*4*3*2*1}} = 11 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*2*3*5*4*3*2 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*10*9*8 \\
$
From this we get that n = 9
Now lets substitute this value of n in the options given
${n^2} + n - 110 = 0$
$ \Rightarrow {9^2} + 9 - 110 = 81 + 9 - 110 = 90 - 110 = - 20$
Therefore the value of n does not satisfy this equation
${n^2} + 2n - 80 = 0$
$ \Rightarrow {9^2} + 2(9) - 80 = 81 + 18 - 80 = 99 - 80 = 19$
Therefore the value of n does not satisfy this equation
${n^2} + 3n - 108 = 0$
$ \Rightarrow {9^2} + 3(9) - 108 = 81 + 27 - 108 = 108 - 108 = 0$
From this we get that the value of n satisfies this equation
Therefore the correct option is C
Note: Permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
