
If $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$ then n satisfies the equation
A.${n^2} + n - 110 = 0$
B.${n^2} + 2n - 80 = 0$
C.${n^2} + 3n - 108 = 0$
D.${n^2} + 5n - 84 = 0$
Answer
576.9k+ views
Hint: By using the formula of permutation ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$and combination ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$in the given expression we can find the value of n. By substituting that value in the given options we can find the equation satisfied by that value.
Complete step-by-step answer:
We are given that $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
We know the formula of ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Here n = n+2 and r = 6
We get ,
$
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)!}}{{6!(n + 2 - 6)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)(n - 4)!}}{{6*5*4*3*2*1*(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}} \\
$
We know the formula of ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Here n = n – 2 and r = 2
$
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)!}}{{(n - 2 - 2)!}} \\
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)(n - 3)(n - 4)!}}{{(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = (n - 2)(n - 3) \\
$
Substituting the values in $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
$
\Rightarrow \dfrac{{\dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}}}}{{(n - 2)(n - 3)}} = 11 \\
\Rightarrow \dfrac{{(n + 2)(n + 1)n(n - 1)}}{{6*5*4*3*2*1}} = 11 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*2*3*5*4*3*2 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*10*9*8 \\
$
From this we get that n = 9
Now lets substitute this value of n in the options given
${n^2} + n - 110 = 0$
$ \Rightarrow {9^2} + 9 - 110 = 81 + 9 - 110 = 90 - 110 = - 20$
Therefore the value of n does not satisfy this equation
${n^2} + 2n - 80 = 0$
$ \Rightarrow {9^2} + 2(9) - 80 = 81 + 18 - 80 = 99 - 80 = 19$
Therefore the value of n does not satisfy this equation
${n^2} + 3n - 108 = 0$
$ \Rightarrow {9^2} + 3(9) - 108 = 81 + 27 - 108 = 108 - 108 = 0$
From this we get that the value of n satisfies this equation
Therefore the correct option is C
Note: Permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Complete step-by-step answer:
We are given that $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
We know the formula of ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
Here n = n+2 and r = 6
We get ,
$
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)!}}{{6!(n + 2 - 6)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)(n - 4)!}}{{6*5*4*3*2*1*(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = \dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}} \\
$
We know the formula of ${}^n{P_r} = \dfrac{{n!}}{{(n - r)!}}$
Here n = n – 2 and r = 2
$
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)!}}{{(n - 2 - 2)!}} \\
\Rightarrow {}^{n - 2}{P_2} = \dfrac{{(n - 2)(n - 3)(n - 4)!}}{{(n - 4)!}} \\
\Rightarrow {}^{n + 2}{C_6} = (n - 2)(n - 3) \\
$
Substituting the values in $\dfrac{{{}^{n + 2}{C_6}}}{{{}^{n - 2}{P_2}}} = 11$
$
\Rightarrow \dfrac{{\dfrac{{(n + 2)(n + 1)n(n - 1)(n - 2)(n - 3)}}{{6*5*4*3*2*1}}}}{{(n - 2)(n - 3)}} = 11 \\
\Rightarrow \dfrac{{(n + 2)(n + 1)n(n - 1)}}{{6*5*4*3*2*1}} = 11 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*2*3*5*4*3*2 \\
\Rightarrow (n + 2)(n + 1)n(n - 1) = 11*10*9*8 \\
$
From this we get that n = 9
Now lets substitute this value of n in the options given
${n^2} + n - 110 = 0$
$ \Rightarrow {9^2} + 9 - 110 = 81 + 9 - 110 = 90 - 110 = - 20$
Therefore the value of n does not satisfy this equation
${n^2} + 2n - 80 = 0$
$ \Rightarrow {9^2} + 2(9) - 80 = 81 + 18 - 80 = 99 - 80 = 19$
Therefore the value of n does not satisfy this equation
${n^2} + 3n - 108 = 0$
$ \Rightarrow {9^2} + 3(9) - 108 = 81 + 27 - 108 = 108 - 108 = 0$
From this we get that the value of n satisfies this equation
Therefore the correct option is C
Note: Permutations and combinations, the various ways in which objects from a set may be selected, generally without replacement, to form subsets. This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

